دراسة بعض المؤشرات الوراثية لأهم صفات الثمار النوعية لسلالات مرباة ذاتياً من البطيخ الأصفر (Cucumis Melo L.) وهجنها التبادلية الكاملة

فاتن الصفدي $*^{(1)}$ وعبد المحسن مرعي $^{(2)}$ ورمز مرشد $^{(3)}$ وهشام العطواني $^{(1)}$

- (1) مركز بحوث السويداء، الهيئة العامة للبحوث العلمية الزراعية، سورية.
- (2) قسم الخضار الثمرية، ادارة بحوث البستنة، الهيئة العامة للبحوث العلمية الزراعية، دمشق سورية.
 - (3) قسم علوم البستنة، كلية الزراعة، جامعة دمشق، دمشق، سورية.

(*للمراسلة د. فاتن الصفدي، البريد الإلكتروني: f.alsafadi@gmail.com)

تاريخ القبول:2022/01/17

تاريخ الاستلام:2021/11/25

الملخص:

نفذت التجرية في الهيئة العامة للبحوث العلمية الزراعية-مركز بحوث السويداء (محطة بحوث حوط) خلال موسمي 2018 و2019، حيث تم تقييم ست سلالات أبوية مرباة ذاتياً من البطيخ الأصفر وهجنها الثلاثين التبادلية الكاملة ضمن تصميم القطاعات الكاملة العشوائية (RCBD) بأربعة مكررات. بهدف تقدير بعض المؤشرات الوراثية كدرجة التوريث بمعناها العربض والضيق ومعدل درجة السيادة والتقدم الوراثي المتوقع والتقدم الوراثي النسبي ومعاملي التباين المظهري والوراثي لبعض خصائص الثمار النوعية (سماكة لب الثمرة، نسبة المادة الجافة%، نسبة السكريات الكلية% والثنائية % والأحادية % في الثمرة، محتوى الثمار من الكاروتينات وفيتامين C). أظهرت النتائج أن التباين الإضافي كان أقل من التباين السادي لجميع الصفات عدا صفة محتوى الثمار من الكاروتينات، حيث كان معدل درجة السيادة لهذه الصفات أعلى من 1، مما يدل على تحكم الفعل المورثي اللاإضافي في توريثها. فيما تحكم الفعل المورثي الإضافي واللاإضافي في توريث صفة محتوى الثمار من الكاروتينات إذ قارب تقدير درجة السيادة من 1، وكانت تقدير درجة التوريث العريضة مرتفعاً لجميع الصفات المدروسة، ومن جهة أخرى بلغ تقدير درجة التوريث الضيقة قيماً متوسطة مع تقدم وراثي نسبي مرتفع لصفة محتوى الثمار من الكاروتينات، ومنخفضاً مع تقدم وراثي نسبى منخفض لبقية الصفات عدا صفة محتوى الثمار من المواد الصلبة الكلية الذائبة بما يسمح بتحسينها عبر طرق التهجين. كما تبين أن التباين المظهري أعلى من التباين الوراثي لجميع صفات الثمار النوعية، إذ بلغ معامل التباين المظهري أعلى قيمة لصفة محتوى الثمار من السكريات الثنائية % (49.016%)، بينما سجل معامل التباين الوراثي تقديرات متوسطة لصفتي محتوى الثمار من فيتامين C ونسبة المادة الجافة ومرتفعاً لصفتي محتوى الثمار من السكريات الثنائية ومحتوى الثمار من الكاروتينات بما يمكن من اجراء الانتخاب.

الكلمات المفتاحية: البطيخ الأصفر، التقدم الوراثي، درجة السيادة، درجة التوريث، معامل التباين المظهري، معامل التباين الوراثي .Cucumis melo L.

المقدمة:

يعد البطيخ الأصفر (Cucumis melo L.) أحد أنواع الخضار الصيفية الهامة التابعة للفصيلة القرعية Cucumis melo L.) أحد أنواع الخضار الصيفية الهامة التابعة للفصيلة القرعية (Cucumis وتركيبها وتركيبها ويتميز البطيخ الأصفر بوجود تنوع مورفولوجي كبير بصفات الثمار كالحجم، اللون، الشكل، الطعم، بنية الثمار وتركيبها (Jeffrey, 1980)، ويزود التباين الوراثي الكبير في صفات هذا النوع مربي النبات بالموارد الوراثية الغنية والمتنوعة، بهدف دراسة الموارد والإفادة منها (Muthuselvi et al., 2019).

تنتشر زراعة البطيخ الأصفر بشكل رئيسي في قارتي أسيا وأفريقيا في المناطق البيئية المدارية وشبه المدارية (27275)، وتشغل مصر المرتبة الأولى عربياً من حيث المساحة المزروعة، والتي بلغت (33886) هكتاراً بإنتاجية قدرها (27275) كغ/ه، وتأتي سوريا في المرتبة السابعة عربياً (المنظمة العربية للتنمية الزراعية، 2018)، إذ بلغت المساحة المزروعة منه لعام 2019 (3328) هكتاراً بإنتاجية مقدارها (23053) كغ/ه (المجموعة الإحصائية الزراعية السنوية، 2019).

تتميز ثمار البطيخ الأصفر بقيمتها الغذائية الجيدة لاحتوائها على العديد من المكونات الغذائية الهامة للإنسان كالمواد الكربوهيدراتية والمكونة من سكريات سهلة الهضم، ويحتوي كل 100 غ من عصير ثمار البطيخ الأصفر على مادة جافة (9.85 %)، سكريات كلية (7.86 غ)، فيتامين C (36.7 ملغ)، بيتا كاروتين (2029.6 ميكروغرام)، (USDA, 2018)، تعتبر ثمار البطيخ الأصفر مصدراً هاماً لفيتامين C وجيداً للبيتا كاروتين (Solval et al., 2012)، كما إن ثماره ذات اللب البرنقالي تعد غنية جداً بمحتواها من البيتا كاروتين، وهي مضادات أكسدة وطليعة لفيتامين A (Fleshman et al., 2011).

إن إجراء عمليات التحسين الوراثي على محصول البطيخ الأصفر قليلة جداً على المستوى الوطني، ومن أجل القيام بأي برنامج تربية لابد من توفر معرفة عميقة للتنوع الوراثي للمحصول وطبيعة التوريث (Janghel et al., 2018). تعتبر درجة التوريث Heritability أحد أهم المؤشرات الوراثية لتقدير الربح الوراثي المحقق وتحديد طريقة التربية المناسبة (صبوح وآخرون، 2009)، وبمعرفة درجة التوريث يمكن تحديد إسهام كل من التركيب الوراثي والبيئي في الشكل المظهري (Lush, 1943)، أظهرت نتائج Metwally وآخرون (2015) في دراستهم لبعض المؤشرات الوراثية بنظام العشائر الست عند تهجين صنفي البطيخ الأصفر (Chair Rouge × Ananas El-Dokki) أن درجة التوريث بمعناها العريض بلغت قيمة عالية جداً لصفة نسبة المواد الصلبة الكلية الذائبة%، أما عند التهجين بين الصنفين (TopMark × Ananas El-Dokki) فكان تقدير درجة التوريث بمعناها العريض مرتفعاً لجميع الصفات المدروسة. أوضح Burton (1952) إن معرفة معامل التباين الوراثي ودرجة التوريث تعطى صورة أوضح عن مدى التقدم الوراثي المتوقع بالانتخاب، لاسيما إذا اقترنت درجة التوريث بتقديرات التقدم الوراثي (Panse, 1957) حيث تعتمد فعالية الانتخاب على درجة التوريث الضيقة العالية المترافقة مع تقدم وراثي متوقع مرتفع (Johnson et al., 1955). إذ أشار Muthuselvi وآخرون (2019) في تجربتهم لتقييم 23 طراز من البطيخ الأصفر إلى وجود تقدم وراثي مرتفع التقدير لصفات سماكة لب الثمرة، المواد الصلبة الكلية الذائبة % وفيتامين C. يساعد تقدير معامل التباين الوراثي genotypic coefficients of variations (GCV) والمظهري phenotypic coefficients of variations (PCV) في اكتساب المعرفة حول الطبيعة الوراثية للمحصول قيد الدراسة (Johnson et al., 1955)، عزا Johannsen) التباين إلى العوامل الوراثية والعوامل غير القابلة للتوريث، حول مستوى التباين ضمن العشيرة، ومدى تأثر صفة ما بالعوامل البيئية (حسن، 2005)، وإمكانية إجراء الانتخاب لبعض الصفات عند ارتفاع مساهمة التركيب الوراثي، وانخفاض التأثير البيئي من جهة أخرى. تهدف هذه الدراسة لتقدير بعض المؤشرات الوراثية لمعرفة الفعل المورثي المتحكم بهذه الصفات ومدى تأثرها بالعوامل البيئية، وأفضل الطرق لتحسينها بالانتخاب أو التهجين.

مواد البحث وطرائقه:

1-المادة النباتية:

تم زراعة بذور الهجن التبادلية الكاملة وعددها 30 هجين (15 هجين و15 هجين عكسي) وسلالاتها الأبوية الست وهي (104)P1، (104) و (118)P2 و (118)P6(118) تم الحصول على بذار الهجن من العام السابق بإجراء التهجين التبادلي الكامل للسلالات الست Full-Diallil crosses.

2-مكان التنفيذ:

تم تنفيذ البحث في مركز بحوث السويداء محطة بحوث حوط خلال السنوات 2018–2019، وتتميز منطقة المحطة بمناخ متوسطي شبه جاف ومعدل هطول مطري منخفض (250 مم/سنوياً)، وتتصف تربة الموقع بأنها طينية ثقيلة قليلة العمق تتوضع على طبقة من الصخور البركانية،

3-طريقة العمل:

زرعت التراكيب الوراثية الـ 36 (30 هجين وسلالاتها الأبوية الست) خلال موسمي الزراعة 2018 و 2019 في تجربة بتصميم القطاعات الكاملة العشوائية بأربعة مكررات. وزرع كل تركيب وراثي في خط واحد متضمناً 10 نباتات، المسافة بين النبات والأخر 0.8 م، وبين الخطوط 1.4 م. قدمت لها كافة عمليات الخدمة قبل وبعد الزراعة بحسب توصيات وزارة الزراعة والإصلاح الزراعي. أخذت القراءات على متوسط 5 ثمار من كل مكرر عند وصولها لمرحلة النضج الاستهلاكي ووصول القشرة الخارجية إلى اللون المميز لكل سلالة قبل انفصال الثمار بشكل كامل بالاعتماد على أسس توصيف البطيخ الأصفر (IPGRI, 2003)، وشملت الصفات المدروسة الأتي:

- سماكة لب الثمرة (سم).
- نسبة المادة الجافة %: وقدرت وفق Kirk و 1989).
- نسبة المواد الصلبة الذائبة الكلية %: قدرت باستخدام جهاز الرفراكتوميتر الرقمي (Matest 24048 –Italy).
- نسبة السكريات الكلية والأحادية والثنائية %: بطريقة المعايرة بمحلول فهلنغ A و B وفق Takahashi (1959).
 - المحتوى من فيتامين C: بطريقة المعايرة بمحلول الايودين وقدرت وفق Ismail وآخرون (2014).
- المحتوى من الكاروتينات: قدرت باستخدام جهاز السبيكتروفيتوميتر (106-UK) على أطوال الموجات 470، 665 و 662 بحسب طريقة Beerh و Siddappa (1959). أجريت جميع هذه الاختبارات في مخبر بحوث البستنة في محطة بحوث حوط ومخبر الموارد الطبيعية.

تقدير المؤشرات الوراثية:

درجة التوريث Heritability:

$$H^2_{BS} = rac{\delta^2 g}{\delta^2 ph} imes 100$$
 : وفق الآتي: Falconer وفق الاتي التوريث بمعناها العريض والضيق بحسب $h^2_{BS} = rac{\delta^2 A}{\delta^2 ph} imes 100$

درجة التوريث بمعناها العريض، $h_{
m ns}=H_{
m BS}$ درجة التوريث بمعناها الضيق،

. التباين المظهري، $g = \delta^2 g$ التباين الإضافى = $\delta^2 ph$

اعتمدت حدود درجة التوريث العريضة بحسب Johnson وآخرون (1955) على النحو التالي:

مرتفعة إذا تجاوزت 60%، متوسطة من 30-60%، منخفضة أقل من 30%.

وتعتبر درجة التوريث الضيقة مرتفعة إذا تجاوزت 50% أي أن تأثير الظروف البيئية في الصفة المدروسة منخفض، أما إذ تراوح تقديرها من 20 إلى 50% فدرجة التوريث متوسطة والظروف البيئية تلعب دوراً في تحوير فعل المورثات، وإذ كان تقديرها أقل من 20% فإن للبيئة تأثيراً كبيراً في الصفة المدروسة.

التقدم الوراثي المتوقع Genetic Advance:

قُدر هذا المؤشر بحسب (Singh, 1983) بينما قدر التقدم الوراثي المتوقع كنسبة مئوية مقارنة بمتوسط الصفة حسب ,Jain (1982 وفق التالي:

$$GA = \sigma ph \times K \times h_{ns}$$
 $GA\% = (GA/\overline{X}) \times 100$

 σ ph التقدم الوراثي المتوقع، GA = التقدم الوراثي النسبي، hns = درجة التوريث بمعناها الضيق، \overline{X} = الانحراف المعياري للتباين المظهري، \overline{X} = متوسط الصفة في المجتمع المعروس.

اعتمدت حدود التقدم الوراثي النسبي المتوقع بحسب Johnson وآخرون (1955)

منخفضة أقل من 10% ومتوسطة من 10-20% وعالية أكثر من 20%.

درجة السيادة Degree of dominance: قدرت درجة السيادة بحسب 1949) وفق النموذج الرياضي:

$$\bar{\mathbf{a}} = \sqrt{H/D}$$

H = H التباين السيادي، D = H

المورثي الإضافي واللاإضافي. $1=\bar{a}$

. تخضع الصفة للفعل المورثي اللاإضافي، $ar{a} > 1$ تخضع الصفة للفعل المورثي الإضافي.

معاملي التباين المظهري والوراثي phenotypic and genotypic coefficients of variations:

قدر التباين الوراثي والمظهري بحسب Johnson وآخرون (1955) كمايلي:

 $\delta^2 g = \left(M_2 - M_1\right)/r$ التباین الوراثی •

 $\delta^2 ph = \delta^2 g + M_1$ التباین المظهري •

حيث M_2 متوسط المربعات العائد للتركيب الوراثي و M_1 متوسط مربعات الخطأ التجريبي و r عدد المكررات.

وقدر معاملي التباين بحسب Singh و Singh (1995) وفق النموذجين الرياضيين:

$$PCV\% = (\sigma \, ph/\overline{X}) \times 100$$

 $GCV\% = (\sigma g/\overline{X}) \times 100$

الوراثي المعياري التباين المظهري σ g = الانحراف المعياري التباين الوراثي σ g

متوسط الصفة في المجتمع المدروس \overline{X}

اعتمدت حدود معاملي التباين المظهري والوراثي بحسب Sivasubramanian و 1973) على النحو الاتي:

مرتفعة إذا تجاوزت 20%، متوسطة من 10-20%، منخفضة أقل من 10%.

النتائج والمناقشة:

أظهرت النتائج في الجدول 1 أن التباين الإضافي أقل من التباين السيادي ومعدل درجة السيادة أعلى من 1 لجميع الصفات عدا صفة محتوى الثمار من الكاروتينات، مما يدل على تحكم الفعل المورثي اللاإضافي في توريثها. فيما بلغ التباين الإضافي والسيادي لصفة محتوى الثمار من الكاروتينات، مما يدل على تحكم الفعل المورثي الإضافي واللاإضافي في توريث هذه الصفة. وكانت درجة التوريث العريضة مرتفعة لجميع الصفات تراوحت بين 86.847 و 86.8616%. واتفقت هذه النتائج مع نتائج Muthuselvi وآخرون (2019) و Reddy وآخرون (2019) و Reddy وآذرون (2013) لجهة درجة التوريث العريضة المرتفعة. ومن جهة أخرى بلغت درجة التوريث الضيقة قيماً متوسطة مع تقدم وراثي نسبي منقص لبقية الصفات عدا صفة محتوى الثمار من المواد الصلبة الكلية الذائبة، حيث كانت درجة التوريث الضيقة لهذه الصفة متوسطة بلغت الصفات عدا صفة محتوى الثمار من المواد الصلبة الكلية الذائبة، حيث كانت درجة التوريث الضيقة المتوسطة والتقدم النسبي منخفض وسالب لصفة سماكة لب الثمرة. اتفقت هذه النتائج مع نتائج Metwally وآخرون (2015) و Singh و Washisht و المنات المدروسة مما يدل على إمكانية الذائبة. وتدل دراسة مؤشرات التباين إلى الدور الذي يلعبه الفعل المورثي اللاإضافي في التحكم في الصفات المدروسة مما يدل على إمكانية استغلال قوة الهجين في تحسين هذه الصفات، وهذا ينسجم مع ما أكده الصفة، مما يدل على إمكانية تحسينها بالانتخاب والتهجين. دورأ هاماً في التحكم بهذه الصفة، مما يدل على إمكانية تحسينها بالانتخاب والتهجين.

 $(H_{B.s})$ والتباين البيئي ($\delta^2 E$) والتباين البيئي ($\delta^2 E$) والتباين البيئي ($\delta^2 D$) والتباين البيئي العريض ($\delta^2 A$) والتقدم الوراثي النسبي ($\delta^2 A$) والتقدم الوراثي النسبي ($\delta^2 A$) المقات الثمار النوعية.

		الصفات المدر وسة						
% GA	GA	a	<i>h</i> .n.s	<i>H</i>. B.s	δ^2 E	$\delta^2 \mathbf{D}$	$\delta^2 A$	
-0.083	-0.004	2.203	-0.284	69.749	0.086	0.198	-0.001	سماكة لب الثمرة/سم
3.303	0.286	3.766	9.182	74.313	0.365	0.926	0.131	المادة الجافة%
4.533	0.402	2.429	20.515	81.016	0.142	0.434	0.147	المواد الصلبة الكلية الذائبة%
2.207	0.176	4.244	7.946	79.488	0.201	0.681	0.076	السكريات الكلية%
0.152	0.008	16.208	0.506	67.005	0.133	0.261	0.002	السكريات الأحادية%
6.975	0.152	4.403	6.908	73.857	0.224	0.562	0.058	السكريات الثنائية %
28.982	8.547	1.236	49.241	86.847	8.272	23.653	30.97	الكاروتينات ميكروغرام/غ
8.727	5.462	2.889	11.921	61.681	94.30	122.46	29.34	فيتامين C ملغ/100غ

كما تُظهر النتائج في الجدول 2 أن التباين المظهري أعلى من التباين الوراثي لجميع صفات الثمار المدروسة، حيث بلغ أعلى تقدير لهما لصفة محتوى الثمار من فيتامين 22.244 C و10.844 على التوالي، تلاها لصفة محتوى الثمار من الكاروتينات، وأدنى قيمة لهما لصفة سماكة لب الثمرة. كما أظهرت النتائج أن تقديرات معامل التباين المظهري أعلى من الوراثي لجميع صفات الثمار المدروسة، وقد بلغ معامل التباين المظهري أعلى تقدير له لصفة محتوى الثمار من السكريات الثنائية (49.016%) تلاها صفة محتوى الثمار من فيتامين C، ثم محتوى الثمار من الكاروتينات%، حيث امتلكت جميعها تقديرات مرتفعة، وأدنى تقدير (10.726%،) لصفة محتوى الثمار من المواد الصلبة الكلية الذائبة%، اتفقت هذه النتائج مع Reddy وآخرون (2013) لصفة محتوى الثمار من

المواد الصلبة الكلية الذائبة%. وفيما سجل معامل التباين الوراثي تقديرات مرتفعة لصفتي محتوى الثمار من السكريات الثنائية% والكاروتينات 23.636% و20.878%، على التوالي، ومتوسطة لصفتي محتوى الثمار من فيتامين C ونسبة المادة الجافة%، ومنخفضاً لبقية الصفات، اتفقت هذه النتائج مع نتائج Muthuselvi وآخرون (2019) لصفة محتوى الثمار من فيتامين C، ومع Lakshmi وآخرون (2017) لصفة نسبة المادة الجافة% في الثمار. وتشير القيم المرتفعة لمعامل التباين الوراثي على إمكانية التحسين عن طريق الانتخاب لهذه الصفات (Anburani et al., 2019). وبلغ أدنى تقدير لصفة محتوى الثمار من السكريات الأحادية 6.728%، وكان الفرق بين تقديري معامل التباين المظهري والوراثي متفاوتاً، إذ كان منخفضاً في صفات سماكة لب الثمرة ونسبة المادة الجافة% والمواد الصلبة الكلية الذائبة% والسكريات الكلية% والكاروتينات%، مما يشير إلى ارتفاع مساهمة المكون الوراثي في التعبير المظهري عن هذه الصفات وتدني التأثير البيئي، بينما كان الفرق عالي القيمة بينهما لبقية الصفات المدروسة مما يشير إلى تأثر هذه الصفات بعوامل البيئة وانخفاض مساهمة المكون الوراثي في التعبير المظهري عنها (2018) الميئة وانخفاض مساهمة المكون الوراثي في التعبير المظهري عنها (2018).

الجدول (2): التباين المظهري (δ^2 ph) والوراثي (δ^2 g) ومعامل التباين المظهري (PCV) %) ومعامل التباين الوراثي (δ^2 ph) الصفات الثمار النوعية.

معامل التباين الوراثي	معامل التباين المظهري	التباين الوراثي	التباين المظهري	
6.745	14.114	0.318	0.666	سماكة اللب/سم
10.520	17.460	0.913	1.515	نسبة المادة الجافة%
6.763	10.726	0.600	0.951	المواد الصلبة الكلية الذائبة%
7.720	13.485	0.617	1.078	السكريات الكلية%
6.728	14.559	0.375	0.811	السكريات الأحادية%
23.636	49.016	0.516	1.069	السكريات الثنائية%
20.878	28.572	6.157	8.426	الكاروتينات ميكروغرام/غ
17.326	35.539	10.844	22.244	C فيتامين مغ/100/غ

مما سبق نجد أن الفعل المورثي اللاإضافي يتحكم في توريث معظم صفات الثمار النوعية عدا صفة محتوى الثمار من الكاروتينات، وهذا يدل على إمكانية تحسين هذه الصفات باستخدام قوة الهجين (Ibrahim).

الاستنتاجات والتوصيات:

- بلغت درجة التوريث الضيقة قيماً متوسطة مع تقدم وراثي نسبي مرتفع لصفة محتوى الثمار من الكاروتينات مما يشير لإمكانية تحسين هذه الصفة بالانتخاب والتهجين.
- كان التباين المظهري أعلى من التباين الوراثي لجميع صفات الثمار المدروسة مما يدل على تأثير البيئة في توريث هذه الصفات، أما بما يخص معامل التباين الوراثي فقد بلغ تقديرات مرتفعة لصفتي محتوى الثمار من السكريات الثنائية ومحتوى الثمار من الكاروتينات مما يدل على إمكانية التحسين عن طريق الانتخاب لهاتين الصفتين.
- كان التباين بين معاملي التباين المظهري والوراثي متفاوتاً، فقد كان منخفضاً في بعض الصفات (سماكة لب الثمرة ونسبة المادة الجافة والمواد الصلبة الكلية الذائبة والسكريات الكلية ومحتوى الثمار من الكاروتينات) مما يشير إلى ارتفاع مساهمة المكون الوراثي في التعبير المظهري عن هذه الصفات، وكان التباين بينهما عالياً في بقية الصفات مما يشير إلى تأثر هذه الصفات بعوامل البيئة وانخفاض مساهمة المكون الوراثي في التعبير المظهري عنها.

المراجع:

- المجموعة الإحصائية الزراعية السنوية. (2019). منشورات وزارة الزراعة والإصلاح الزراعي-مديرية الإحصاء والتخطيط قسم الإحصاء الجدول 62.
 - المنظمة العربية للتنمية الزراعية. (2018). الكتاب السنوي للإحصاءات الزراعية العربية-الخرطوم-المجلد 37-الجدول 89.
 - صبوح، محمود ومها حديد وعدنان قنبر. (2009). الوراثة الكمية (الجزء النظري). منشورات جامعة دمشق، 398 صفحة.
- حسن أحمد، عبد المنعم. (2005). تحسين الصفات الكمية الإحصاء البيولوجي وتطبيقاته في برامج تربية النبات الدار العربية للنشر والتوزيع -جمهورية مصر العربية-251 صفحة.
- Anburani, A., P. Kannan and K. Muthumanickam. (2019). Genetic variability, heritability and genetic advance for yield and yield components in watermelon (*Citrullus lanatus* Thunb.). World News of Natural Sciences. 25: 22-30.
- Beerh, O. P. and G. S. Siddappa (1959). A rapid spectrophotometric method for the detection and estimation of adulterants in tomato ketchup. Food Technology, 13: 414-418.
- Burton, G.W. (1952). Quantitative inheritance in Crasses. Proc' 6th Int. Crassld Congr. 1:277-283.
- Falconer, D.R. (1989). Introduction to Quantitative Genetics. Third Edition. Longman, New York. 340 P.
- Fleshman, M. K., G. E. Lester; K. M. Riedl, R. E. Kopec, S. Narayanasamy, R. W. Jr. Curley, S. J. Schwartz and E. H. Harrison (2011). Carotene and Novel Apocarotenoid Concentrations in Orange-Fleshed *Cucumis melo* Melons: Determinations of β-Carotene Bioaccessibility and Bioavailability. Journal of Agricultural and Food Chemistry. 59: 4448–4454.
- Hussien, A.H. (2015). Nature of gene action and heterotic performance for yield and yield components in summer squash (*cucurbita pepo* 1.). J. Plant Production. Mansoura Univ. 6 (1): 29 40.
- Ibrahim, E. A. (2012). Variability, Heritability and Genetic Advanced in Egyptian sweet melon (*Cucumismelo* var. *aegyptiacus* L.) under water stress conditions. International Journal of Plant Breeding and Genetics. 6(4):238-244.
- IPGRI. (2003). Descriptors for Melon (*Cucumis melo* L.). International Plant Genetic Resources Institute, Rome, Italy.
- Ismail, M., A. Sajjad and M. Hussain. 2014. Quantitative Determination of Ascorbic Acid in Commercial Fruit Juices by Redox Titration. International Journal of Pharmaceutical Quality Assurance. 5(4): 22-25.
- Jain, J.P. (1982). Statistical Techniques in Quantitative Genetics. Tata McGraw Hill Co., New Delhi, 281p.
- Janghel, A. K., J. Trivedi, D. Sharma, Y. K. Lodhi and L. Kumar. (2018). Genetic Variability in Muskmelon (*Cucumis melo* L.) Under Protected Condition. Int. J. Curr. Microbiol. App. Sci. 6: 211-217.
- Jeffrey C. (1980). A review of the *Cucurbitaceae*. Botanical Journal of the Linnean Society 81: 233-247.
- Johannsen, W. L. (1909). Elements der Exateten Exblich Keitsletra Jena, Gustan Fischer. P: 130: in Karadi, S.M. 2014. Genetic variability and divergence studies in wild Melon (*Cucumis Melo Subsp. Agrestis*). MSc. Thesis. Bagalkot University. 71p.
- Johnson, H.W., H.R. Robinson and R.E. Comstock (1955). Estimates of genetic and environmental variability in soyabeans. Agronomy Journal. 47: 314-318.

- Kirk, S. and R. Sawyer (1989). Pearson composition and analysis of food, 9th. Longman scientific and Technical. New York. p: 18-31.
- Lakshmi, L. M., H. B. Lingaiah, A. Mohan Rao, T. B. Putta Raju, M. Pitchaimuthu and D. M. Gowda. (2017). Variability and genetic divergence studies for economic traits in indigenous oriental pickling melon (*Cucumis melo* var. *conomon*) genotypes. Electronic Journal of Plant Breeding. 8(1): 365-370.
- Lush, J. L. (1943). Animals Breeding Plans. Iowa State Collage Press. Ames Iowa.
- Mather, K. (1949). Biometrical Genetics. Dover Publication, Inc., New York.
- Metwally, E. I., M. E. M. Ahmed. I. A. Al-Ballat. U. K. Al-abbasy and A. M. Konsowa (2015). Gene action and heritability of fruit yield and it is components on melon (*Cucumis melo*. L). Egyptian Journal of Plant Breeding. 19 (3):37-55.
- Muthuselvi, R., S. Praneetha, Z. John Kennedy and D. Uma (2019). Assessment of variability in snap melon (*Cucumis melo* var. *Momordica*duth. & full) genotypes. Journal of Pharmacognosy and Phytochemistry. 8(4): 654-657.
- Panse, U. G. (1957). Genetics of quantitative characters in relation to plant breeding. Indian J. Genet. 17: 318-328.
- Reddy, S. A. K. and A. Shanthi (2013). Variability and genetic diversity studies of muskmelon accession in the coastal region of karaikal. Green Farming. 4(6): 764-766.
- Singh, B. D. (1983). Plant breeding, Principles and methods of quantitative genetic analysis. Harayana J. Hort. Sci., 12(1): 151-156.
- Singh, R.K. and B.D. Chaudhary (1995). Biometrical methods in quantitive genetic analysis. Kalyani publishers. New Delhi-318p.
- Singh, N. and V. K. vashisht (2015). Genetic analysis of economic traits in muskmelon (*cucumis melo* 1.) using biparental progenies. Agric. Res. J. 52 (1): 94-97.
- Sivasubramanian, S. and M. Menon.(1973). Heterosis and inbreeding depression in rice. Madras Agric. J. 60(7): 1139-1140.
- Solval, K., S. Sundararajan, L. Alfaro and S. Sathivel (2012). Development of cantaloupe (*Cucumis melo*) juice powders using spray drying technology. LWT Food Science and Technology. 46(1): 287-293.
- Staub, J. E., A. I. López-Sesé and N. Fanourakis (2004). Diversity among melon landraces (*Cucumis melo* L.) from Greece and their genetic relationship with other melon germplasm of diverse origins. Euphytica 136: 151–166.
- Takahashi, M. (1959). Determination of Reducing Sugars by Means of Back Titration against Alkaline Copper Solution. Annual Meeting of the Chemical Society of Japan. 33(2): 178-181.
- USDA: United States Department of Agriculture Agricultural. Research Service National Nutrient Database for Standard Reference Legacy Release. (2018). http://ndb.nal.usda.gov/.

Study of some Genetic Parameters for Fruit Quality traits of Melon (*Cucumis Melo* L.) Inbred Lines and their complete diallel F₁ Hybrids

Faten alsafadi*(1), Abdel Mohsen Marie⁽²⁾, Ramzi Murshid⁽³⁾ and Hesham Alatwani⁽¹⁾

- (1) Sweida Research Center, General Commission for Scientific Agricultural Research (GCSAR), Syria.
- (2) General Commission for Scientific Agricultural Research, Damascus, Syria.
- (3) Department of Horticulture Science, Faculty of Agriculture, University of Damascus, Damascus, Syria.

(*Corresponding author: Dr. Faten alsafadi. E-Mail. f.alsafadi@gmail.com).

Received: 25/11/2021 Accepted: 17/01/2022

Abstract

This study was conducted at GCSAR-Swaida research center (Hout station) during the season 2018-2019, to evaluate six melon inbred lines and their 30 F₁ hybrids produced by complete diallel mating design, using RCBD with four replications, to study genetic indicators as (Broad and narrow sense Heritability, Degree of dominance, Genetic Advance, Genotypic and Phenotypic coefficients of variations) for some fruit quality traits of melon (fruit pulp thickness, dry matter%, total soluble solids%, total sugar%, monosaccharides%, disaccharides%, carotenoids, vitamin C). The results showed that the additive variance was less than dominance variance for all studied traits, except the fruit content of carotenoids, since the degree of dominance was higher than 1 for these traits, this is indicating the importance of non-additive effects in the inheritance of these traits. While, the fruit content of carotenoids was under control of both additive and non-additive variance, and the degree of dominance was close to 1. The Estimates of the broad sense heritability was high in all traits On the other hand, the narrow sense heritability was an intermediate estimate for fruit content of carotenoids associated with a high genetic advance, and intermediate estimate for total soluble solids associated with low genetic advance. The results showed that the estimated of the phenotypic coefficient of variation are higher than the genetic coefficient of variation for all fruit quality traits. The phenotypic coefficient of variation reached the highest value for the characteristic of the fruit content of disaccharides% (49.016%), and the coefficient of genetic variation, it reached high estimates for the fruit content of disaccharides% and fruit content of carotenoids, and intermediate for the fruit content of vitamin C and dry matter%, and low for the rest of the traits.

Keywords: Degree of dominance, Genetic Advance, Genotypic coefficients of variations (GCV), Heritability, Melon, *Cucumis melo* L., Phenotypic coefficients of variations (PCV).