تأثير اتجاه اقطاب المغناطيس في نمو وإنتاجية نبات البامياء

عبدالكريم محمد عبد $^{(1)}$ وأسعد رحمان الحلفي $^{*(2)}$ وحيدر ابراهيم علي $^{(2)}$

- (1) قسم البستنة وهندسة الحدائق-كلية الزراعة-جامعة البصرة، البصرة، العراق.
 - (2) قسم علوم الاغذية-كلية الزراعة-جامعة البصرة، البصرة، العراق.
- (*للمراسلة الباحث: أسعد رحمان الحلفي، البريد الإلكتروني: aalhilphy@yahoo.co.uk)

تاريخ الاستلام:2021/01/5 تاريخ القبول: 2021/01/5

الملخص:

نفنت التجربة في محطة الأبحاث الزراعية التابعة لكلية الزراعة جامعة البصرة للموسم 2019 لدراسة تأثير أقطاب المغناطيس في نمو وإنتاجية نبات البامياء صنف (ديرة)، وتم قياس الشدة المغناطيسية للمغانط، وتم تعيين جهات الشمال والجنوب لكل قطعة تجريبية، وكانت المعاملات المدروسة مكونة من عامل واحد هو المغنطة ولصنف زراعي محلي (ديره) حيث اشتملت الدراسة على الشاهد بدون مغنطة والمعاملة بالاتجاه الشمالي والمعاملة الجنوبي والمعاملة الجنوبي. استخدم تصميم القطاعات العشوائية الكاملة وبثلاثة مكررات لكل معاملة. أظهرت النتائج تفوق معنوي ((p<0.05)) لمعاملة توجيه القطب الجنوبي للمغناطيس نحو النبات بصفة ارتفاع النبات، عدد الأوراق، المساحة الورقية، وزن الثمرة والإنتاج الكلي نحو النبات بصفة ارتفاع النبات، عدد الأوراق، المساحة و 2.90 غم و 2.55 طن.د-1) على التوالي لكل المعاملات والشاهد الذي أعطى القيم الأقل ((p<0.05) مم و (p<0.05) من (p<0.05) على التوالي الكل المعاملات والشاهد الذي أعطى القيم الأقل ((p<0.05) مم و (p<0.05) على المغناطة، الصفات الخضرية ، الصفات الثمرية.

المقدمة:

يتبع نبات البامياء (Abelmoschus esculentus L) العائلة الخبازية Malvaceae وهي من محاصيل الخضر الصيفية المهمة التي تزرع في المناطق الحارة والدافئة في آسيا وإفريقيا وتسمى بعدة أسماء Bamhia (Bonhert,2008) (Bonhert,2008). نبات البامياء من المحاصيل الواسعة الانتشار في العراق حيث تزرع في جميع المناطق لغرض الحصول على القرون التي تؤكل بعد الطهي أو تستعمل بصورة مجمدة أو مجففة خلال فصل الشتاء، وتأتي أهميتها الغذائية من احتوائها على المواد الكربوهيدراتية والبروتين والألياف والدهون والأملاح المعدنية كالكالسيوم والحديد والفيتامينات مثل فيتامين Abelmoschus وباسم ،1981). أجريت العديد من الدراسات حول نبات البامياء لأهميته الغذائية والتي من شانها زيادة الإنتاج وتقليل الأثر الضار لملوحة التربة والتي أصبحت واقع حال في الزراعة العراقية وخاصة جنوب العراق.

التقنية المغناطيسية مسألة تثير الاهتمام إذ أثبتت فعاليتها في شتى مجالات الحياة ومنها الزراعة، إن معالجة الماء مغناطيسيا تعمل على جعل الماء أكثر قدرة على إذابة وغسل الاملاح من التربة وزيادة جاهزية العناصر الغذائية في محلول

التربة، وفي العراق أجريت دراسات عديدة تضمنت استعمال هذه التقنية والتي أعطت نتائج جيدة في تحسين الخصائص الفيزيائية والكيميائية للماء والتربة وتحسين نمو النبات وزيادة إنتاجيته (المعروف،2007).

أثبتت الدراسات أن المياه الممغنطة تعمل على زيادة الإنتاج من خلال تحفيز إنبات البذور وزيادة نمو النباتات وبالتالي ينعكس إيجاباً على الإنتاج، فقد اشار (2003) Vasilevski إلى أن استخدام الطرق Biophysical Methods في الزراعة يمكن ان يحقق زيادة في إنبات البذور بمقدار 20%–30% وزيادة الحاصل الاقتصادي بمقدار 10%–50% وزيادة انتشار الجذور 24% وزيادة مقدار تحمل النبات للإجهادات المختلفة والتقليل من استخدام الاسمدة بمقدار 10–15% والتقليل من استخدام المبيدات وتلوث المياه الجوفية وتقليل كلف الإنتاج .

بيّن محمد ومجيد (2013) عند دراسة استجابة نمو وإنتاجية البندورة لعنصري للكالسيوم والبورون تحت الري الممغنط بأن الري بالماء المعالج مغناطيسياً قد أعطى زيادة معنوية في ارتفاع النباتات والمساحة الورقية وزيادة عدد الأزهار في العنقود الزهري /نبات ومعدل وزن الثمرة /نبات والإنتاج المبكر.

درس كل من يحيى وعبدالرزاق (2015) تأثير طرائق الري بالتنقيط والرش والري السطحي ومغنطة المياه في نمو وإنتاجية نبات زهرة الشمس، بينت النتائج تأثيراً ايجابياً لتقنية مغنطة مياه الري بالشدات (0،1000،2000،3000) كاوس في زيادة الإنتاج بنسبة 30.7 و 43.2 و 65.5 % وزيادة عدد البذور بنسبة في زيادة الإنتاج بنسبة 16.9 و 65.5 % وزيادة عدد البذور بنسبة 45.8 و 63.5 % وقطر القرص بنسبة 22.6 و 16.9 % في موسمي الدراسة وأعطت جميع طرق الري مع الشدة المغناطيسية 3000 كاوس أعلى نسبة إخصاب مقارنة مع بقية المعاملات.

أوضح الخطيب والنجم (2015) في دراستهم حول تأثير ملوحة ماء الري ومغنطتها والاستنزاف الرطوبي في نمو وحاصل البطاطا باستخدام ثلاثة عوامل، الأول ملوحة ماء الري بمستويين مياه الفرات ومياه مالحة (مياه البزل)، والعامل الثاني هو المياه المغنطة بشدة 1500 كاوس، والعامل الثالث هو الاستنزاف الرطوبي، إن استخدام المياه الممغنطه أدى الى زيادة معنوية في ارتفاع النبات والمساحة الورقية والإنتاج الكلي كما زادت قيم أطوال الجذور.

في تجربة قام بها بقلي وسعدون (2013) حول استجابة نبات الجزر . Daucus carota L. لنوعين من مياه الري الممغنطة أظهرت النتائج حدوث زيادة معنوية في أغلب الصفات المدروسة مثل محتوى الأوراق من الكلوروفيل الكلي، محتوى الأوراق من البوتاسيوم، طول الجذر وقطره ووزنه نتيجة الري بمياه النهر الممغنطة مقارنة بمعاملة الري بمياه البزل.

قام كل من أبو حنة والأمين (2018) بدراسة تأثير مستخلص الشمبلان Ceratophyllum submersum (أحد النباتات المائية والتي تتواجد في اهوار العراق) والماء المعالج مغناطيسياً في بعضلمؤشرات النمو الخضري والكيميائي لنبات الخيار من خلال تجربة تضمنت الري بالماء المعالج مغناطيسياً بشدات (0،1000،2000) كاوس، وسجلت الشدة 2000 كاوس تفوقاً معنوباً في بعض الصفات الفيزبائية والكيميائية.

هدفت الدراسة الحالية الى دراسة معرفة تأثير اتجاه الاقطاب المختلف للمغناطيس الثابت في النمو الخضري وصفات الإنتاج والإنتاجية لنبات البامياء (صنف محلى: ديرة).

مواد البحث وطرائقه:

إن معاملات التجربة مكونة من عامل واحد هو المغنطة ولصنف زراعي محلي (ديره) حيث اشتملت الدراسة على معاملة المقارنة بدون تأثير للمغنطة والمعاملة الثانية فقط شمالي والمعاملة الثالثة فقط جنوبي والمعاملة الرابعة شمالي وجنوبي معاً. تم زراعة النباتات بتاريخ (2019/12/25) في البيت البلاستيكي كبذور مباشرة بأرض البيت البلاستيكي.

1-المادة النباتية:: استخدم صنف المحلي: ديرة . جلبت البذور من دائرة زراعة البصرة الشركة العامة لإنتاج البذور. 2- مكان تنفيذ التجربة:

تم تنفيذ التجربة في البيت البلاستيكي التابع لكلية الزراعة جامعة البصرة.

3- تطبيق المعاملات المدروسة: تم إحضار قطع مغناطيس من الأسواق المحلية الى المختبر وتم قياس الشدة المغناطيسية لكل قطعة بواسطة جهاز ... Gauges and Tesla meter (type Nv621, Nevis Technology Pvt. حيث تم لأخذ ثلاث قراءات لكل قطعة وكانت الشدة (3500 كاوس) ، وتم تعيين جهات الشمال والجنوب لكل قطعة. حُرثت الأرض حراثة متعامدة وأضيف لها السماد العضوي المتحلل بمعدل 10 طن .د-1 ونعمت الارض وقسمت الى اربعة خطوط (كل خط كان لمعاملة 1-المقارنة 2-الشمالي فقط 3-الجنوبي فقط 4-الشمالي والجنوبي معا) بطول الى اربعة خطوط (كل خط كان لمعاملة 1-المقارنة 2-الشمالي فقط 3-الجنوبي فقط 4-الشمالي والجنوبي معا) بمعدل 42 م وعرض 40 سم وبمسافة 40 سم بين خط وأخر وأضيف لها سماد السوبر فوسفات الثلاثي (45% P2 O5) بمعدل بسمك 10 سم، واستعملت منظومة الري بالتنقيط لري النباتات. تم البدء بري الحقل بواسطة المنظومة قبل يومين من الزراعة لترطيب التربة، ثم زرعت البذور في الوحدات التجريبية. حيث زرعت ثلاثة بذور لكل جورة على جهتي الخط وبالتبادل. خفت النباتات فيما بعد الى نبات واحد بعد تكامل الإنبات وكان طول القطعة التجريبية متران وعدد النباتات في القطعة التجريبية متران وعدد النباتات في القطعة التجريبية 10 نباتات ، وروبت النباتات بعد عشرة أيام من الإنبات.

وضعت قطع المغناطيس بجوار البذور بمسافة 3 سم وبعمق 5 سم. المجموعة الأولى من النباتات كانت بدون وضع أي قطعة مغناطيس (شاهد) والمجوعة الثانية وضع قطع مغناطيس باتجاه الشمال للنباتات والمجوعة الثالثة كانت بوضع قطع باتجاه النباتات الجنوبي، أما المجموعة الرابعة فقط وضعت قطعتين شمالي وجنوبي والبذور بينهما وبنفس المسافة، واستخدم الري بالتنقيط في هذه الدراسة.

أجريت كافة عمليات الخدمة ولجميع المعاملات كما هو متبع في إنتاج هذا المحصول من ري وتسميد، إذ أضيف السماد المركب 20-20-20 بمعدل 100 كغ .د $^{-1}$ على دفعتين الأولى عند إجراء عملية الخف والثانية عند التزهير (ابو ضاحي واليونس، 1988) كما اتبع برنامج وقائى لوقاية الحقل من الحشرات والأمراض أثناء موسم الدراسة.

القراءات المدروسة: تم قياسها حسب ما ذكره (Balouchi and Mahdavi ,2007) بمعدل ستة نباتات لكل معاملة وفي كل مكرر.

1- ارتفاع النبات/ سم:

تم قياس ارتفاع النبات من مكان اتصال الساق بالتربة حتى قمة الساق الرئيس.

2- عدد الأفرع / نبات:

تم حساب عدد الأفرع المتكونة لكل نبات على الساق الرئيس بأخذ معدل الأفرع وشملت الأفرع التي تحتوي على أكثر من سلامية.

 1^{-1} : عدد القرون. نبات 3

تم من خلال حساب عدد القرون على كل نبات.

4- المساحة الورقية:

تم قياس المساحة الورقية وذلك بأخذ ثلاث أوراق لكل نبات من الثلث العلوي والوسط والسفلي، ثم وضعت على أوراق بيضاء ورسمت حافة الورقة وبعدها قدرت مساحة الورقة، وقيست باستخدام Planmeter ثم استخرج معدل مساحة الورقة الواحدة/ م2 مضروباً في معدل عدد الاوراق الكلي.

-5 إنتاج القرون الكلى غ. نبات $^{-1}$: –

تم حسابه عن طريق قسمة مجموع إنتاجية الوحدة التجريبية من بداية الموسم حتى نهايته علي عدد نباتات الوحدة التجريبية، وكانت عملية الجنى تتم كل أربعة أيام.

6-- الإنتاج المبكر غ . نبات $^{-1}$:

اعتبر إنتاج الأسبوعين الأوليين من بداية إنتاج النبات كإنتاج مبكر.

7 الإنتاج الكلى (كغ . د $^{-1}$): تم جنى القرون كل أربعة أيام ثم تسجيل الوزن الكلى لقرون كل قطعة تجريبية.

التحليل الاحصائي:

استعمل تصميم القطاعات العشوائية الكاملة (randomized complete block design R.C.B.D) بثلاثة مكررات. كللت النتائج باستخدام تحليل التباين وقورنت المتوسطات باستخدام اختبار LSD عند مستوى احتمال 0.05 باستخدام برنامج Gene stat 2007 (الراوي وخلف الله, 1980).

النتائج والمناقشة:

الصفات الخضرية:

توضح المعطيات الواردة في الجدول (1) أن معاملة الاتجاه الجنوبي للمغناطيس (أي اتجاه الجنوب المغناطيسي نحو النبات) ساهمت في زيادة معنوية لكل مؤشرات النمو الخضري من ارتفاع النبات وعدد الاوراق وعدد الأفرع والمساحة الورقية (178.33 سم و79.67 ورقة/ نبات و6.00 فرع. نبات $^{-1}$ و 1.44 سم (18.33 سم و79.67 ورقة نبات و3.33 فرع.نبات $^{-1}$ و 27.0 سم3) على التوالي، كما يلاحظ من الجدول عدم وجود فروقات معنوية بين معاملتي الشمالي والشمالي الجنوبي في صفة عدد الأفرع (4.00 و4.67) فرع. نبات $^{-1}$ على التوالي.

الصفات الثمرية:

كان لاستخدام الأقطاب المغناطيسية تأثير إيجابي في صفات الإنتاج لنبات البامياء (الجدول2) فقد تفوق عدد القرون النبات $^{-1}$ عند معاملة المغنطة بالاتجاه جنوبي وبفروق معنوية (138 قرن النبات $^{-1}$) على باقى المعاملات والشاهد الذي أعطى

العدد الأقل (84.7 قرن.النبات $^{-1}$)، والتي لم تختلف معنوياً مقارنةً مع معاملة الشمالي والشمالي الجنوبي (92.3 و 96.3 قرن.النبات $^{-1}$) على التوالى.

أثير اتجاه المغناطيس على الصفات الخضرية لنبات الباميا صنف ديره.

المساحة الورقية سم-2	عدد الافرع النبات-1	عدد الأوراق.النبات-1	ارتفاع النبات. سم-1	المعاملات
0.04±0.727 ^d	0.04±3.33 b	1.12±43.00°	4.96±156.67 ^d	الشاهد
0.01±0.890 °	0.09±4.00 ^b	2.03±48.00°	5.01±163.67 °	شمالي
0.04±1.447 a	0.10±6.00 a	2.22±79.67 a	178.33±4.98 ^a	جنوبي
0.02±0.967 b	0.03±4.67 b	2.98±58.67 b	5.99±170.00 b	شمالي +جنوبي
0.1527	1.803	6.362	6.101	LSD _{0.05}

تم التعبير عن البيانات بالمتوسط الحسابي ± الانحراف المعياري

يلاحظ من الجدول (2) أيضا تفوق معاملة الجنوبي حيث سجلت أعلى القيم بمتوسط وزن الثمرة اذ بلغت 3.25 غم بغروق معنوية مقارنة مع باقي المعاملات المدروسة، وقد سجلت معاملة الشاهد أقل القيم 1.60غم وبغارق معنوي مع معاملات الدراسة، وساهمت معاملة المغنطة بالاتجاه الجنوبي في زيادة معنوية في مؤشر إنتاج النبات من القرون والإنتاج المبكر والإنتاج الكلي وبغروق معنوية (138.0 و 138.0 كغ د $^{-1}$ و 3.25 طن. $^{-1}$) على باقي المعاملات والشاهد.

جدول (2) تأثير اتجاه المغناطيس على الصفات الإنتاج والإنتاجية لنبات الباميا صنف ديره.

الإنتاج الكل <i>ي</i> طن.د-1	الإنتاج المبكر كغ.د-1	إنتاج النبات غ.نبات-1	وزن الثمرة غ	عدد القرون النبات- ¹	المعاملات
0.04±1.60 °	±8.34±132.0 ^b	9.95±211 ^d	0.03 ± 2.56^{c}	2.02±84.7 b	الشاهد
0.02±1.96 b	9.02±148.3 b	11.09±268 ^c	0.07±3.10 ^b	3.12±92.3 b	شمالي
0.02±3.25 a	5.98±231.3 a	9.78±478 ^a	0.08±3.42 a	10.01±138.0 a	جنوبي
0.04±2.10 b	10.01±156.0 ^b	7.94±307 ^b	0.06±2.90 b	4.91±96.3 b	شمالي +جنوبي
0.36	30.44	69.4	0.29	16.95	LSD _{0.05}

تم التعبير عن البيانات بالمتوسط الحسابي ± الانحراف المعياري.

وتعزى النتائج السابقة لدور المغنطة في تحسين الخصائص الفيزيائية والكيميائية للمياه والتربة وزيادة مؤشرات النمو الخضري والإنتاجية حيث اتفقت النتائج الحالية مع عدد من الباحثين، إذ اتفقت مع علوان وآخرون (2012) عند استخدامه جهاز لمغنطة مياه الري واختبار كفاءته حيث اثبت كفاءته في زيادة انبات بذور بادرات الابامياء وزيادة كل من طول البادرة والوزن الطري والجاف. كما اتفقت نتائج الدراسة ما توصل اليه محمد ومجيد (2013) حول استجابة نمو وإنتاجية البندورة تحت تأثير الري الممغنط والحصول على أفضل الصفات من ارتفاع النبات والمساحة الورقية والحاصل المبكر. تم الحصول على نتائج مماثله حول تأثير الماء الممغنط في نمو وحاصل الخيار والبندورة للباحثين عمران وآخرون(2017) والتي أثبتت فعالية الممغنط في زيادة معظم الصفات المدروسة من إنبات البذور والحاصل الكلى وارتفاع النبات.

وتعزى النتائج الى ارتفاع درجة ذوبانية الماء الممغنط مقارنة بالماء غير الممغنط، هذا يحدث عندما يتعرض الماء الى المجال المغناطيسي فإنه سيمتلك طاقة أكبر قياساً الى طاقته الأصلية نتيجة الزيادة الحاصلة في نشاط أيوناته وحركته الواسعة وبالتالي ستكون له قابلية أكبر على فك ارتباط الأيونات الملتصقة به، وهذا يجعله أكثر ذوبانية أي زيادة القابلية

على إذابة الأملاح وتحللها وانتشارها. إن هذه الخاصية المكتسبة من عملية المغنطة تجعل الماء أكثر حيوية وذا فائدة للبذرة والنبات وهذا يتوافق مع ما وجده (Takashinko, 1997).

وبالتالي يكون دخول الماء المعالج مغناطيسياً لخلايا الجذور بشكل أسرع من دخول الماء العادي من خلال عملية تحطيم الروابط الهيدروجينية جراء مغنطة ماء الري والذي يسهل عملية امتصاص الماء من قبل خلايا الجذور، كما يصبح الماء ناقلاً جيداً للعناصر المغذية ويزيد من جاهزيتها في التربة (David et al, 2000) ، وبالتالي يحدث زيادة في انقسام واستطالة الخلايا وزيادة نواتج عملية التمثيل الضوئي وخاصة الكربوهيدرات (Kronenberg, 2005)، وزيادة حجم المجموع الخضري (Atak et al., 2003)، والذي ينعكس إيجابياً في زيادة عدد الازهار (Balouchi et al., 2007)، ومن ثم تنقل نواتج التمثيل الضوئي إلى الثمار وتساهم في زيادة وزنها، إن هذه النتيجة تتوافق مع ما حصل عليه عناطيسياً، وبالتالي زيادة إنتاجية المحصول (العاني ، 2008).

الاستنتاجات:

نستنتج من الدراسة تفوق اتجاه قطب المغناطيس الجنوبي وبصورة معنوية في كل مؤشرات المجموع الخضري ومؤشرات الإنتاج والإنتاجية.

التوصيات:

زراعة صنف البامياء (الديرة) نوصي باستخدام المعاملة (القطب الجنوبي) وممكن تطبيق هذه التقنية على محاصيل أخرى الشكر

يشكر المؤلفون قسم البستنة-كلية الزراعة-جامعة البصرة على المساعدة في توفير مستلزمات البحث والمختبرات.

المراجع:

- أبو حنة، منصور عبد و علي مثنى فرمان الامين (2018). تأثير مستخلص الشمبلان والماء المعالج مغناطيسا في بعض المؤشرات النمو الخضري والمزروع في البيئة الصحراوية للمحصول . Cucumis sativus L الكيميائي والإنتاج لمحصول الخيار . مجلة كريلاء للعلوم الزراعية المجلد 5:3 .
- ابو ضاحي، يوسف محمد ومؤيد احمد اليونس (1988). دليل تغذية النبات.دار الكتب للطباعة والنشر جامعة الموصل. وزارة التعليم العالي والبحث العلمي. العراق:77-81.
- بقلي، احمد باقر وسعدون عبدالهادي سعدون(2013).استجابة نبات الجزر Daucus carota L ننوعين من مياه الري الممغنطة ومغنطة البذور. مجلة الفرات للعلوم الزراعية .55 (2) 56-65.
- الخطيب، بسام الدين هشام و حذيفة جاسم محمد النجم(2015). تأثير ملوحة مياه الري ومغنطتها والاستنزاف الرطوبي في نمو وحاصل البطاطا. مجلة الأنبار للعلوم الزراعية مجلد 31 العدد2: 49-60.
 - الراوي،خاشع محمودوعبدالعزيز محمد خلف الله(1980). تصميم وتحليل التجارب الزراعية .وزارة التعليم العالي والبحث العلمي ،مؤسسة دار الكتب للطباعة والنشر ،جامعة الموصل ،العراق:97–110.
- الركابي ، فاخر ابراهيم وعبد الجبار جاسم (1981). انتاج الخضر ، هيئة المعاهد الفنية/ وزارة التعليم العالي والبحث العلمي .بغداد. العراق.

- علوان ،صباح لطيف واحمد نوري آل فخر الدين وحيدر عزيز علي الشبلي(2012).امكانية تصنيع جهاز لمغنطة المياه واختبار كفاءته في انبات بذور بادرات الباميا. مجلة الكوفة للعلوم الزراعية 4(2) 175-179.
- عمران ، نذير جمال وزينب فؤاد ناظم وعلي سالم عبدالسادة (2017). تأثير الري بالمياه الممغنطة في انبات بذور ونمو وإنتاجية محصولي الخيار والطماطة في التربة الصحراوية. المجلة العراقية للعلوم والتكنولوجيا 2(3) 67-79.
- محمد، رشا رعد وبيان حمزة مجيد (2013). استجابة نمو وانتاجية الطماطة للكالسيوم والبورون تحت الري الممغنط. مجلة الفرات للعلوم الزراعية 5(4):337–337.
- المعروف , عبد الكريم فاضل حميد. (2007). تأثير مغنطة مياه الري المالحة في بعض خصائص التربة ونمو وإنتاجية محصول الطماطة في منطقتي الزبير وصفوان. أطروحة دكتوراه- كلية الزراعة جامعة بغداد.
- يحيى، شيماء حسن ومحمد مبارك علي عبدالرزاق (2015). تأثير طرائق الري ومغنطة المياه في حاصل زهرة الشمس ومكوناته . مجلة العلوم الزراعية العراقية 34(6). 330–341.
- Atak, C., Emiroglu, O., Aklimanoglu, S. and Rzakoulieva, A (2003). Stimulation of regeneration by magnetic field in soybean (*Glycine max L. Merrill*) tissue cultures. J. Cell Mol. Biol., 2:113–119.
- Balouchi, H.R., A.M. Seyed and B. Mahdavi .(2007). Electromagnetic Field Influence oAnnual Medics, Barley, Dodder and Barnyard Grass Seed Germination. Pakistan Journal of Biological Sciences, (1): 1-6.
- Manual of environmental microbiology. 2nd edition, ASM Press Washington. PP: 960-971.
- Bonhert, C. 2008. Vegetable Guide . Gefferson Institute. Missouri, U.S.A. Bohme , M. and H.Thia Lua, (1997). Influence of mineral and organic treatments in the rhizosphere on the growth of tomato plants. Acta Hortic, 450 : 161-168.
- David, M. O. and E. T. Nilsen, 2000. The physiology of plant under stress. Publisher: John Wiley & Sons; 2nd edition (November 7, 1996). V,1: Abiotic Factors 2nd Edition
- De -Souza, A., D. Garcia, L. Sueiro, L. Licea and E. Porras. (2005). Pre-sowing magnetic treatment of tomato seeds: effects on the growth and yield of plants cultivated late in the season. Spanish Journal of Agricultural Research, 3(1): 113-122.
- Kronenberg, K. J. (2005). Magneto hydrodynamics: The effect of magnets on fluids. GMX international macronutrient levels and nitrate accumulation in okra. J. Amer. Soc. Hort. Mathematical and physical Fisheries science, 3: 74-80.
- Takashinko, Y.(1997). "Hydro Magnetic Systems and Their Role in Creating Micro Climate" International Symposium on Sustainable Management of Salt Affected Soil, Cairo Egypt, 22 28. The Journal of Agricultural, Environmental and Veterinary Sciences, 1(2):35-46.
- Vasilevski, G. (2003). Perspectives of the application of biophysical methods in sustainable agriculture. Bulg. J. Plant Physiol. Special Issue, 2(3): 179-186.

The Effect of the Direction of the Magnet Poles on the Growth and Productivity of the Okra Plant

Abdulkareem M Abd $^{(1)},$ Asaad R. Al-Hilphy* $^{(2)},$ and Haider I. Ali $^{(2)}$

- (1)Department of Horticulture and Land Scape- College of Agriculture, University of Basrah-Iraq
- (2)Department of food Science-college of Agriculture-University of Basrah. Basrah, Iraq.

(*Corresponding author: Asaad al-Hilphy, E-Mail aalhilphy@yahoo.co.uk).

Received: 5/01/2021 Accepted: 14/10/2021

Abstract

The experiment was carried out at the Agricultural Research Station of the College of Agriculture, University of Basra for the season 2019 to study the effect of the magnet poles on the growth and productivity of the okra plant (Deira). The magnetization of a local agricultural variety (Deira), where the study included the control without magnetization, treatment in the north direction, treatment in the south, and treatment on the north-south. A randomized complete block design with three replications was used for each treatment. The results showed significant superiority (p<0.05) for the treatment of the south pole orientation of the magnet towards the plant in terms of plant height, number of leaves, leaf area, fruit weight and total production (178.33 cm, 79.67 leaves.plant⁻¹, 1.44 cm², 2.9 g, and 3.25 tons.d⁻¹) respectively for all treatments and the control that gave the lowest values (156.67 cm, 43.00 leaves. Plant ⁻¹, 0.727 cm², 2.56 g and 1.66 tons.d⁻¹) respectively.

Keywords: okra, magnetism, vegetative traits, fruiting traits.