اختبار فاعلية مستخلصات أزهار نبات الوزال على أنواع من البكتيريا والفطور الممرضة للنبات

(1) ونوارة على محمد $(2)^*$ وخالد المبروك المير (1)

- (1) قسم البستنه، كلية الزراعة، جامعة عمر المختار، البيضاء ، ليبيا
- (2) قسم الوقاية، كلية الزراعة، جامعة عمر المختار، البيضاء ، ليبيا

(*المراسلة الباحثة: نوارة على محمد، البريد إلالكتروني nwara.mohamed@omu.edu.ly على محمد، البريد إلالكتروني

تاريخ إلاستلام:2020/11/23 تاريخ القبول: 2020/11/23

الملخص

استهدفت هذه الدراسة تقييم مستخلصات لأزهار الوزال Spartium junceum L على نمو الكائنات الممرضة للنبات شملت بكتربا Agrobacterium tumefaciens Erwinia cartovora و بكتيريا Xanthomonas campestris pv.vesicatoria ، أما الفطور المختبرة تمثلت في كل من الفطر Botrytis fabae، oxysporum و Pencillium digitatum. جمعت هذه إلازهار من منطقة رأس الهلال بالشمال الشرقي من ليبيا، وجففت وطحنت وتم استخلاصها بالماء والكحول والهكسان، وسمم الوسط الغذائي بطاطس دكستروز اجار بتركيز 5% من كل مستخلص على حدة مع وجود أطباق الشاهد، زرعت البكتيريا على أطباق بترى تحوى إلاجار المغذى ثم وزعت عليها أقراص منقوعة بهذه المستخلصات كل على حدة، مع وجود المضاد الحيوى للمقارنة. أشارت النتائج إلى انخفاض معنوى في نمو الكائنات المختبرة تحت ظروف المختبر من خلال قياس النمو الطولى للفطريات ومنطقة التثبيط للبكتيريا على إلاجار المغذى ثم سجلت النتائج فروق معنوية بين المذيبات المستخدمة في الإستخلاص وأعطى المستخلص الميثانولي تأثير عالى على فطربات الثلاثة Fusarium oxysporum ، Botrytis fabae و digitatum مقارنة بالمستخلصات المائية والهكسانية بنسب (82.5% ، 63.2 و 81.2%) على التالي بعد 5 أيام تحضين، كذلك على بكتيربا Erwinia cartovora ، أما المستخلص أزهار الوزال المائي له تأثير على فطر Botrytis fabae وعلى كل من Agrobacterium tumefaciens و Erwinia cartovora، بينما كان مستخلصها الهكساني أعلى تأثير على الفطر Pencillium digitatum، نستنج من هذه الدراسة أنه يمكن الحصول على مواد من أزهار الوزال تثبط نمو الكائنات الممرضة للنبات.

الكلمات المفتاحية: أزهار الوزال، مستخلصات نباتية، فطريات ممرضة للنبات، بكتيريا ممرضة للنبات.

المقدمة:

نبات الوزال Papilionaceae ويُسمى كذلك بالرتم إلاصفر، شُجيرة تتبع العائلة البقولية Spanish ويُعتبر الموطن الإصلي لنبات الوزال منطقة حوض البحر إلابيض المتوسط وجُزر الكناري، جنوب أوروبا broom، ويُعتبر الموطن الاصلي لنبات الوزال منطقة حوض البحر إلابيض المتوسط وجُزر الكناري، جنوب أوروبا (Sanhueza & Zalba, 2012 :Tabur, Cesur, & Özkul, 2009) الوزال متعدد النشاط في مجال العلاجات النباتية وتتخدم ضد أمراض (Zengin et al., 2019) العديد من المستخلصات النباتية تستخدم ضد أمراض الإنسان والإمراض النباتية لإحتوائها على مواد كيميائية فعالة مثل الفينولات والقلويدات والتربينات التي يصنعها النبات كوسيلة (Glycosides) ومنها سكوبارين (Scoparin) بأزهار نبات الوزال بواسطة (1988،Wagner)، وعلى الفلافونويدات والصابونين (Glycosides) بأزهار نبات الوزال بواسطة (1988،Wagner)، وعلى الفلافونويدات كوصيلة والصابونين (Froestos, Boziaris, Nychas, & Komaitis, 2006) يهدف الكائنات الممرضة من خلال تسميم أوساطها الغذائية (Proestos, Boziaris, Nychas, & Komaitis, 2006) يهدف هذا البحث إلى تقييم فاعلية مستخلص أزهار الوزال ضد عدد من الممرضات النباتية.

مواد البحث وطرائقه:

اعداد النبات: جمعت أزهار الوزال من منطقة رأس الهلال الساحلية على ارتفاع 39 م فوق مستوى سطح البح، حيث جففت هوائيا ، ثم وضعت في فرن تجفيف تحت تفرغ على درجة حرارة 35 °م وطحنت وحفظت لحين إلاستعمال في عبوات محكمة إلاغلاق ومعتمة تحت ظروف جافة على درجة حرارة 20° م لحين الإستخلاص.

الكائنات المختبرة: عُزلت وعُرفت في مختبر أمراض النبات / قسم وقاية النبات، كلية الزراعة، جامعة عمر المختار البيضاء، ليبيا، حيث عزلت البكتريا Agrobacterium tumefaciens من شتول الخوخ عليها أعراض تدرن التاجي، أما البكتيريا ليبيا، حيث عزلت البكتريا Xanthomonas campestris pv.vesicatoria مغزول من نبات الطماطم عليها أغراض تبقع وبينما البكتيريا Erwinia cartovora من إلابصال المصابة بالعفن الطري، والفطور Botrytis fabae المتحصل عليه من أوراق الغول التي عليها أعراض مرض تبقع أوراق البني، Fusarium oxysporum المعزول من نبات الطماطم المصاب بمرض الذبول الفيوزارمي و Pencillium digitatum من ثمار الليمون المصابة بالعفن إلاخضر.

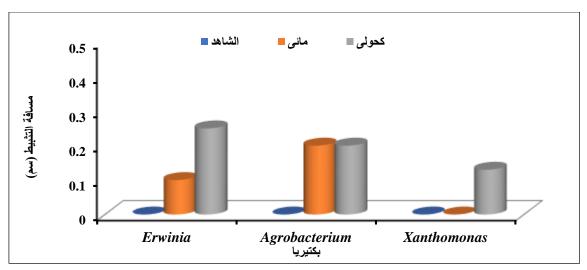
تحضير المستخلصات النباتية: المحصول على المستخلص المائي البارد وضع وزن 200 جرام من مسحوق أزهار الوزال في وعاء زجاجي وأضيف إليها مقدار 500 مل من الماء المقطر و وضعت في جهاز الرجاج لمدة 6 ساعات بعد الترشيح تم المحصول علي المستخلص المائي، وأضيفت علي نفس مسحوق إلازهار 500 مل من الميثانول للمحصول علي المستخلص الكحولي، وأعيدت هذه الخطوة بإضافة 500 مل من الهكسان على نفس المسحوق، بخرت كل المستخلصات باستخدام المبخر الدوار تحت تقريغ Rotary Evaporator للحصول على المستخلصات الجافة التي أعيد حلها في المذيب المستخدم في الإستخدام (Amer et al., 2013)

تقييم تأثير المستخلص المضاد للنمو البكتيري: اختبرت الفعالية الحيوية المستخلصات المائية وإلايثانولية والهكسانية المسحوق أزهار الوزال في المختبر In vitro لتقييم تأثيرها على نمو البكتيريا باستخدام مستنبت إلاجار المغذي من خلال تطبيق تقنية القرص disk diffusion method، شرب المستخلص الخام (20µل/ قرص) على اقراص ترشيح منفصلة قطرها (5 مم)، ووزعت على أطباق بتري يحوي الوسط الغذائي منشور عليها البكتيريا في وجود أقراص ترشيح مشرية المضاد الحيوي 0.25 Ciprofloxacin مليجرام/مل للمقارنة، في وجود أطباق الشاهد التي تخلو فيها إلاقراص من مادة الإستخلاص، حضنت إلاطباق لمدة 24 ساعه عند درجة حرارة 28م°، وأخذت النتائج بحساب مسافة التثبيط (مم)، كل اختبار zone) حول القرص مقارنة بالمضاد الحيوي وحسب التأثير المضاد الميكروبي بقياس قطر مسافة التثبيط (مم)، كل اختبار تم تكرره مرتين وحالت المتوسطات احصائيا باستخدام برنامج (Chouduri) وآخرون، 2014)، وحسب التأثير المعادلة التالية: Parvin, Abdul Kader, Chouduri, Rafshanjani,

نسبة التأثير التثبيطي للمستخلص (%) =: [(متوسط قطر منطقة التثبيط لمضاد الحيوي – متوسط قطر منطقة التثبيط للمستخلص)/ متوسط قطر منطقة التثبيط للمضاد الحيوي] *100

تقييم التأثير المضاد للنمو الفطرى: قيمت المستخلصات النباتية المعقمة تحت ظروف مخبرية باستخدام مرشح زايتس كل على حدة، باستخدام تقنية إلاطباق المسمومة poisoned food technique وذلك بخلط 5 مل من التركيز الخام مع 45 مل من المستنبت (Potato Dextrose Agar medium (PDA ثم وزعت في 3 أطباق في وجود أطباق الشاهد غير المسمومة والخالية من المستخلصات. وضع قرص من الفطر بمركز الطبق، تم قياس النمو الطولى بعد 7 ايام من التحضين عند25 م° وتم حساب نسبة التثبيط بتطبيق المعادلة التاليه [نممو الطولى في أطباق الشاهد – النمو الطولى في أطباق الشاهد).

صممت تجارب الدراسة بالتصميم كامل العشوائية CRD) Completely Randomized Design)، وحللت البيانات المصائيا باستخدام برنامج (Minitab 13) لتحليل تباين ANOVA، أجريت المقارنة بين المتوسطات عند أقل فرق معنوي (LSD 0.05).


النتائج و المناقشة:

الهدف الرئيسي من هذه الدراسة هو إثبات قدرة مستخلصات أزهار الوزال على تثبيط نمو الكائنات الممرضة للنبات وبينت النتائج انخفاض معنوي في نمو هذه الكائنات تحت ظروف المعملية ويعزى ذلك إلى سمية هذه المستخلصات للفطريات ومنطقة التثبيط والبكتيريا في المختبر. وتم إلاعتماد على تقدير التأثير الميكروبي من خلال قياس النمو الطولي للفطريات ومنطقة التثبيط للبكتيريا على إلاوساط. إن مستخلصات الوزال عالية التأثير على الفطور الممرضة للنبات المختبرة، توجد فروق معنوية بين المذيبات المستخلص في الإستخلاص وأعطى المستخلص الميثانولي تأثير عالٍ على فطر Botrytis fabae و Botrytis fabae و المستخلص المائي أعطى تأثير يصل الى Pencillium digitatum Pencillium في المحافظ فطر Botrytis fabae و المستخلص المائي أعطى تأثير للمستخلص الهكساني إلا على الفطر Pencillium digitatum و و كان منخفض التأثير (جدول 1). توجد فروق معنوية بين البكتيريا المختبرة كانت بكتيريا Perwinia cartovora و كان منخفض التأثير (جدول 1). توجد فروق معنوية بين البكتيريا المختبرة كانت بكتيريا

Agrobacterium tumefaciens أكثر تأثراً بالمستخلصات النباتية مقارنة ببكتيريا بكتيريا campestris pv.vesicatoria التي لم يتجاوز مسافة التثبيط 0.042 سم، وأعطى المستخلص الميثانولي تأثير أقوى من المائي وكلاهما أثر على البكتيريا الثلاثة معنوياً، حيث أعطى المستخلص الميثانولي أقوى تأثير على Erwinia cartovora وصلت الى 0.25 سم، في حين أثر المستخلص المائي على Agrobacterium tumefaciens و cartovora بمسافة تثبيط (0.2 و 0.1 سم) على التوالي، في حين لم يكن له أي تأثير على 3.0 و 0.1 سم) campestris pv.vesicatoria، يمكن أن يعزى ذلك إلى أن المستخلصات الكحولية ساهمت في استخلاص تراكيز عالية من المركبات الكيميائية والمركبات الفعالة حيوياً من أزهار الوزال تتفق هذه النتائج مع Sofiane and Wafa, (2019 اضافةً إلى أن أن المستخلص الكحولي لأزهار نبات الوزال له تأثير على الأغشية الليسوسومية في الخلية البكتيرية وعلى نشاط أنزيماتها حيث ذكر (Habibatni et al., 2016) أن أزهار الوزال لها تأثير ميكروبي. وقد قام Proestos et al., (2006) بالإستخلاص الكحولي للمركبات الفينولية من أزهار الوزال المجففة وتم تقدير كفاءتها ضد الكائنات الممرضة من خلال تسميم أوساط غذائية مناسبة. يتميز نبات الوزال باحتوائه على مُركبات كيمائية فعالة ضد الممرضات النباتية، والتي لها دورا هاما في دفاع النبات (Proestos et al., 2006)منها: المُركبات الفينولية (Balasundram, et al., 2006) (Habibatni et al., 2016). القلويدات مثل سايتيزين (القلويدات مثل سايتيزين (المجارتين (Sparteine)مع جينيستين (Genistein وايزوسبارتين (ISO Sparteine)، وتُعتبر مادة السبرتين شديدة السُمية وتُستعمل كمُضاد لسموم بعض الأفاعي والحشرات. ومادة الجينستين مُضادة للفطريات كذلك أكثر من 4000 مركب فلافونوبدي (Males, Plazibat, Vundac, and Zuntar, 2006))، وأظهرت النتائج الدراسة أن الإستخلاص بالكحول أعلى تأثير من المائي وبرجع هذا إلى الفلافونوبدات أعلى مستوى عند الإستخلاص الكحولي. أما أزهاره غنية بالجلايكوسيدات منها مادة سكوبارين (Scoparin (Wagner, 1988، الفلافونوبدات, Scoparin (Wagner, 1988)) منها مادة سكوبارين Gismondi, & Canini, 2018 والصابونين (Gismondi, & Canini, 2018 ومادة Spartitrioside من أزهار نبات الوزال Yeşilada & Takaishi, 1999).) نستنتج من الدراسة أن لأزهار الوزال تأثير لنمو الممرضات النباتية الفطرية والبكتيرية، مما يشير إلى امكانية استخدامها كمبيد من أصل نباتي.

جدول (1) تأثير مستخلصات أزهار الوزال في النمو القطري لبعض الفطور الممرضة للنبات، و % تأثيرها مقارنة مع الشاهد

قطر نمو الميسيلومي وتأثير المعاملة بمستخلصات الوزال على فطريات الممرضة للنبات												
Pencillium digitatum				Fusarium oxysporum				Botrytis fabae				
5 ايام		3 ايام		5 ايام		3 ايام		5 ايام		3 ايام		
تأثير المعاملة %	نعو قطر قط	تأثير المعاملة %	. دغ فط	تأثير المعاملة %	،غ نغ نظ	تأثير المعاملة %	نمو نظ	تأثير المعاملة %	ع غ غط غط	تأثير المعاملة %	نمو ف ط فط	المعاملات
	8.5a		8.5a		6.3bc		3.0 efghi		7.7ab		5.1cde	الشاهد
0.0	8.5a	0.0	8.5a	40.0	3.8dfeg	40.3	1.8ghi	66.9	2.6fghi	62.0	2.0ghi	المائي
81.2	1.6ghi	87.1	1.1i	63.2	2.3fghi	46.1	1.6ghi	82.5	1.4hi	80.5	1.0i	الميثانولي
39.4	5.15cde	58.8	3.5defgh	11.2	5.6bcd	11.9	2.6fghi	15.2	6.5abc	14.6	4.4cdef	الهكساني

شكل (1) تأثير المستخلصات الكحولية والمائية لإزهار الوزال على نمو البكتيريا الممرضة للنبات

المراجع:

- Pisum عنن قرون البازلاء (2017) عن عنن قرون البازلاء (2017) عن البازلاء (البازلاء وتعريف فطريات عنن قرون البازلاء (50 البيضاء ليبيا. مجلةالعلوم الزراعية والبيولوجية المجلد (50 البيضاء ليبيا. مجلةالعلوم الزراعية والبيولوجية المجلد (50 البيضاء ليبيا.
- محمد ، نوارة على وسميه ارحيمه امراجع (2017) تسجيل مرض العفن الكريمي (Sour rot)على ثمار الطماطم. المجلة اللسنة لوقانة النبات. 7: 28- 39.
- Amer, A., M. A. Zaeid and A. H. Al-Mabrouk (2013). Effects of twenty-eight plant Extracts as insecticides against adults of the sweet potato whitefly *Bemisia tabaci* Gennadius (Homoptera: Aleyrodidae) on tomato plants. International Conference on Applied Life Sciences, *UAE*. September 15-17,.
- Chouduri, A. U. Rafshanjani, A. S. and Haque, E. 2014. Antibacterial, antifungal and insecticidal activities of the n-hexane and ethyl-acetatefractions of methanolic extract of the leaves of *Calotropis gigantea* Linn Shumaia Parvin, Md. Abdul Kader, Journal of Pharmacognosy and Phytochemistry, 2 (5): 47-51
- Fatehpuria, P. K., Sasode, R. S., Chobe, D. R. and Singh, R. 2017. Standardization of concentration of effective botanicals against *Sclerotinia sclerotiorum*, Int. J. Pure App. Biosci., 5(6): 286-288.
- Bilia, A. R., Flammini, F., Flamini, G., Morelli, I., & Marsili, A. (1993). Flavonoids and a saponin from Spartium junceum. Phytochemistry, 34(3), 847-852. doi: https://doi.org/10.1016/0031-9422(93)85371-W
- botanical-online, SL. (1999-2020). Spanish broom toxicity (Spartium junceum). https://www.botanical-online.com/en/medicinal-plants/spanish-broom-toxicity
- Habibatni, Sofiane, Miceli, Natalizia, Ginestra, Giovanna, Maameri, Zineb, Bisignano, Carlo, Cacciola, Francesco, . . . Taviano, Maria Fernanda. (20 .(16Antioxidant and antibacterial activity of extract and phases from stems of Spartium junceum L. growing in Algeria. International Journal of Phytomedicine, 8(1), 37-46.
- Katović, D, Katović, A, & Antonović, A. (2011). Extraction Methods of Spanish Broom (Spartium Junceum L.). Drvna industrija, 62 (4), 255-261.

- Males, Z., Plazibat, M., Vundac, V. B., & Zuntar, I. (2006). Qualitative and quantitative analysis of flavonoids of the strawberry tree Arbutus unedo L. (Ericaceae). Acta Pharmaceutica, 56(2) .250-245,
- Nanni, Valentina, Canuti, Lorena, Gismondi, Angelo, & Canini, Antonella. (2018). Hydroalcoholic extract of Spartium junceum L. flowers inhibits growth and melanogenesis in B16-F10 cells by inducing senescence. Phytomedicine, 46, 1-10. doi: https://doi.org/10.1016/j.phymed.2018.06.008
- Parvin, Shumaia, Abdul Kader, Md., Chouduri, Aktar Uzzaman, Rafshanjani, Abu Shuaib Md., & Haque, Md. Ekramul. (2014). Antibacterial, antifungal and insecticidal activities of the n-hexane and ethyl-acetate fractions of methanolic extract of the leaves of Calotropis gigantea Linn. Journal of Pharmacognosy and Phytochemistry, 2(5), 47-51.
- Proestos, C., Boziaris, I. S., Nychas, G. J. E., & Komaitis, M. (2006). Analysis of flavonoids and phenolic acids in Greek aromatic plants: Investigation of their antioxidant capacity and antimicrobial activity. Food Chemistry, 95(4), 664-671. doi: https://doi.org/10.1016/j.foodchem.2005.01.049
- Sanhueza, Cristina, & Zalba, Sergio M. (2012). Experimental control of Spanish broom (Spartium junceum) invading natural grasslands Management of Biological Invasions, Issue: , 3(2), 97-104.
- Sofiane, Gaamoune, & Wafa, Nouioua. (2019). Antioxidant and anti-inflammatory activities valorisation of methanol extract of two Fabaceae (Genesta pseudo-pilosa and Spartium junceum L) growth in East of Algeria. International Journal of Chemistry and Pharmaceutical Sciences, 7(3), 60–63.
- Tabur, Selma, Cesur, Aslıhan, & Özkul, Hülya. (2009). Karyology of seven Fabaceae Taxa from Turkey Journal of Applied Biological Sciences, 3 (1), 49-53.
- Wagner, H. (1988). Pharmazeutische Biologie. New York: Gustav Fischer Verlag, Stuttgart.
- Yeşilada, Erdem, & Takaishi, Yoshihisa. (1999). A saponin with anti-ulcerogenic effect from the flowers of Spartium junceum. Phytochemistry, 51(7), 903-908. doi: https://doi.org/10.1016/S0031-9422(99)00198-3
- Zengin, G., Mahomoodally, M. F., Picot-Allain, C. M. N., Cakmak, Y. S., Uysal, S., & Aktumsek, A. (2019). In vitro tyrosinase inhibitory and antioxidant potential of Consolida orientalis, Onosma isauricum and Spartium junceum from Turkey. South African Journal of Botany, 120, 119-123. doi: https://doi.org/10.1016/j.sajb.2018.01.010

Testing the Efficacy of Wasal Flowers Extracts on Phytopathogenic Bacteria and Fungi

Zenib Suliman (1), Nwara Mohamed* (2) and Khaled El-Mir (1)

- (1) Department of Horticulture, Faculty of Agriculture, Omar Mukhtar University, Al-Bayda, Libya.
- (2) Department of plant protection, Faculty of Agriculture, Omar Mukhtar University, Al-Bayda, Libya.

(*Corresponding author: Nwara A. Mohamed, nwara.mohamed@omu.edu.ly).

Received: 23/11/2021 Accepted: 22/12/2021

Abstract

This study aimed to evaluate the effectiveness of extracts of Spartium junceum L flowers on the growth of some plant pathogenic organisms, including the Bacteria (Agrobacterium tumefaciens, Xanthomonas campestris pv.vesicatoria and Erwinia cartovora& the Fungi Botrytis fabae, Fusarium oxysporum and Penicillium sp. . The flowers were collected from the area of Ras Al Hilal Green Mountain of Libya and then dried, grinded, and extracted aqueously, alcoholically and with hexane and poisoned the medium PDA with a concentration of 5% of each extract separately in the presence of the control plates, while the bacteria were made by Disk Method with these extracts separately, and distributed on plates cultured with bacteria in the presence of the antibiotic. The results indicated a significant decrease in growth of the tested organisms under laboratory conditions by measuring the radial growth of the fungi colonies (cm) and displaying the inhibition zone for bacteria on the media. The results also recorded significant differences between the solvents used in the extraction. The alcoholic extract had a high effect on the growth of the fungi Botrytis fabae and Penicillium sp. and the growth of the bacteria Erwinia carotovora, while the aqueous extract affected the growth of Botrytis fabae, Agrobactrium and Erwinia, while the hexane extract affected the growth of the fungus Penicillium sp., we conclude from this study that it is possible to obtain compounds that inhibit the growth of some plant pathogenic organisms from extracts of *Spartium junceum* L flowers.

Key words: *Spartium junceum* L. flowers, aqueous, methanolic, hexane, extracts phytopathogenic fungi, phytopathogenic bacteria.