دور الزراعة الذكية مناخياً في التكيف مع التغيرات المناخية

ربم فياض *(1)

(1). مديرية الزراعة والإصلاح الزراعي، اللاذقية، سورية.

(* للمراسلة: د. ريم فياض، البريد الالكتروني:fayadr788@gmail.com

تاريخ الاستلام: 2023/05/15 تاريخ القبول:2023/10/8

الملخص

تمثل الزراعة الذكية مناخياً أحد أهم الاستراتيجيات التي تمكن من تحقيق التكيف مع التغيرات المناخية العالمية والتخفيف من آثارها في الإنتاج الزراعي في ظل الضغط المتزايد على الموارد الطبيعية وزيادة الحاجة للغذاء. ولا يمكن تحقيق متطلبات التنمية الزراعية المستدامة بدون اعتماد نهج يمّكن من مواجهة التحديات المناخية ويضمن استقرار الإنتاج الزراعي, لذلك برزت في سورية مشاريع الزراعة التجددية كنواة للزراعة الذكية مناخياً التي نفذت من شهر شباط 2021 م وحتى أيلول 2022 م في ست محافظات رئيسة, والتي أثبتت نجاعتها وحققت نتائج تطبيقية إيجابية من حيث الإنتاج كماً ونوعاً والجدوى الاقتصادية, والتي يمكن اعتبارها خطوة هامة في سبيل تحقيق استدامة الإنتاج الزراعي.

الكلمات المفتاحية: التغير المناخي, الزراعة الذكية مناخيًا, الزراعة التجددية, التنمية المستدامة.

المقدمـــة:

تعد التغيرات المناخية Climate Changes من أكثر التحديات التي تواجهها النظم الإيكولوجية كافة, وتبلغ تأثيراتها إلى أكثر الأمور حيوية بالنسبة لسكان الأرض, لاسيما ما يتعلق منها بالأمن الغذائي والمائي على حد سواء. يعرف التغير المناخي حسب الهيئة الحكومية الدولية المعنية بتغير المناخ IPCC (2001) بأنه التغير الناجم بصورة مباشرة أو غير مباشرة عن النشاطات البشرية التي تفضي إلى تغير في تكوين الغلاف الجوي العالمي، والذي يلاحظ على فترات زمنية متماثلة(الحامولي,2021). ووفقاً لتقرير الـPCC فإن الوقت ينفذ أمام العالم لمجرد إبطاء التغير المناخي، فحتى إذا خفض العالم الانبعاثات بدرجة كبيرة خلال العقد المقبل، فقد يرتفع متوسط درجة الحرارة العالمي 1.6 مم بحلول عام 2060 م قبل أن يستقر. وهذا ما سيرفع درجة الإجهاد الحراري الذي قد يصل لمستويات قاتلة للبشر في المناطق المدارية ذات الكثافة السكانية العالية، حيث يفيد تقرير الـPCC أن 75% من العالم سيتعرضون للإجهاد الحراري بحلول عام 2100 م إذا لم نتحكم في انبعاثات الكربون. حيث تعتزم بعض الدول تحقيق الحياد المناخي وخفض انبعاثاتها من الغازات المسببة للاحتباس الحراري إلى الصفر بحلول عام 2050.

تشير معظم الدراسات والأبحاث أن الدول النامية سوف تتحمل العبء الأكبر من الأضرار الناجمة عن التغير المناخي, إذ أن أقل المساهمين في التغير المناخي سيكونون أشد المتضررين به, في حين تساهم الدول الغنية بالنسبة الأكبر، فمن المرجح أن يؤدي تغير المناخ إلى انهيار نظم الزراعة وانعدام الأمن الغذائي وقد يعيق النمو الاقتصادي بالإضافة إلى زيادة انتشار الأمراض ومعدل الوفيات الآمر الذي يؤدي إلى زيادة حدة الفقر والحد من قدرة الأفراد على مواجهة الأخطار الناتجة عن هذا التغير في هذه الدول (عبد القادر, 2012).

يمثل التغير المناخي أحد أبرز معوقات التتمية الزراعية المستدامة في المنطقة العربية عموماً وسورية خصوصاً, لما له من أثر في عناصر البيئة الطبيعية, فارتفاع درجة الحرارة وتناقص كميات الهطل المطري وتزايد حدة وتواتر الظواهر المناخية المتطرفة وزيادة تكرار فترات الجفاف مضافاً إليها تدهور الترب وزيادة ملوحتها يمثل تهديداً مباشراً لمعظم عناصر إنتاج الغذاء. ويتمثل تهديد تلك الظواهر المناخية المتطرفة للقطاع الزراعي من خلال انخفاض إنتاجية المحاصيل الزراعية وتدني جودتها وتقلص المساحات الزراعية القابلة للزراعة وتناقص إمدادات الموارد المائية النقليدية وملوحة مياه الري والتربة ونشاط الأفات الزراعية..الخ. يمثل التكيف مع تلك التغيرات إستراتيجية ضرورية على كل المستويات من أجل التخفيف من وطأة احتمالات تغير المناخ وعواقبه المحتملة على الإنتاج الزراعي، وبالرغم من أن ظاهرة التغير المناخي ظاهرة عالمية إلا أن تأثيراتها محلية أي تختلف من مكان إلى مكان آخر على سطح الأرض(PCC, 2007), لذلك يجب العمل على تأمين بنية تحتية صامدة للمناخ لمواجهة آثار تغير المناخ الحالية والمستقبلية, وتبني استراتيجيات التكيف مع المناخ والتخفيف من وطأته على الإنتاج الزراعي, ومن أهم تلك الاستراتيجيات الزراعة الذكية مناخياً التي تأخذ بعين الاعتبار التغيرات المناخية الراهنة والمتوقعة من جهة, وبناء القدرة وإمكانية التكيف معها في الأطاعات كافة وتحقيق متطلبات التنمية المستدامة من جهة أخرى.

1- أهمية البحث:

يكتسب البحث أهميته من دور الزراعة الذكية مناخياً كوسيلة فعالة وآمنة بيئياً للتخفيف من آثار التغير المناخي في الإنتاج الزراعي, وفي الوقت ذاته تسهم في تحسين الإنتاج الزراعي كماً ونوعاً وتحقق الفائدة الاقتصادية.

-2 هدف البحث:

يهدف البحث إلى توضيح مفهوم الزراعة الذكية مناخياً ومتطلبات تطبيقها وإن كان هناك من تطبيقات عملية لها فما هي أبرز نتائجها.

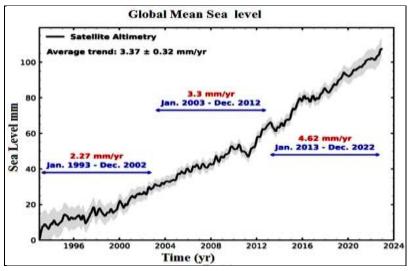
3- المواد وطرائق البحث:

استخدم في البحث مواد تتلاءم وطبيعة البحث وهي:

- التقارير المناخية العالمية من المنظمة العالمية للأرصاد الجوية WMO.
- بيانات الهطل المطري لعدد من المحطات المناخية في سورية للفترة 1960- 2020 من مديرية الأرصاد الجوية بدمشق.
- البيانات التي تم الحصول عليها من مديرية مكتب الإنتاج العضوي لتطبيقات الزراعة التجددية للموسم 2021- 2022.
 - التحليل الإحصائي للبيانات آنفة الذكر ومعالجتها باستخدام برنامج Excel بغية استخلاص النتائج.

4- الدراسات المرجعية السابقة:

1. المؤشرات المناخية العالمية:


a) درجة الحرارة:

تسارعت وتيرة التغيرات المناخية العالمية بشكل خاص بعد عام 2000 م, وتجلت أكثر خلال الفترة ما بين 2023-2020-2023 م, وهذا ما أظهرته التقارير التي أعدتها الهيئات والمؤسسات المعنية بدراسة تغير المناخ. إذ تشير تقارير منظمة الأرصاد الجوية العالمية (WMO) إلى أن الفترة ما بين شهر كانون الثاني 2022 م وحتى شهر شباط 2023 م هي خامس أكثر فصول الشتاء دفئاً على مستوى العالم منذ بدء التسجيلات الرصدية الحديثة عام 1880م, حيث ازداد متوسط درجة حرارة فصل الشتاء بمقدار 0.88 م° عن متوسط خط الأساس العالمي للفترة 1951–1980 (خط الأساس أو المرجع: هو الحالة التي يقاس التغيّر

مقابلها وفترة الأساس هي الفترة التي تُحسب حالات الشذوذ بالنسبة لها وبالنسبة لمتوسط درجة الحرارة العالمية يستخدم خط أساس الفترة 1850 – 1900 لعصر ما قبل الصناعة). كما صنف شهر تشرين الثاني 2022 م على أنه ثاني عشر أشهر تشرين الثاني الأكثر دفئاً, حيث ازداد متوسط درجة حرارته بمقدار 0.73 م° عن متوسط خط الأساس العالمي للفترة 1910–1980 م. كما أن شهر كانون الأول الأكثر دفئاً, حيث زاد متوسط درجة حرارته بمقدار 0.96 م° عن متوسط خط الأساس العالمي للفترة 1951–1980. ومع استمرار ظاهرة النينا Rina فقد عد شهر كانون الثاني 2023 م هو سابع أشهر كانون الثاني الأكثر دفئاً منذ عام 1880 م, حيث زاد متوسط درجة حرارته بمقدار 0.87 م° عن متوسط خط الأساس. وشهر شباط 2023 م رابع أكثر أشهر شباط دفئاً منذ عام 1880 م, حيث زادت درجة حرارته بمقدار 0.97 م° عن متوسط خط الأساس للفترة 1951– 1980 (NASA, 2023) كما أن شهر آذار 2023 ثاني أكثر شهور آذار دفئاً, حيث زادت درجة حرارته بمقدار 1910 م° عن متوسط درجة حرارته الموارية كالقمح الإنتاج الزراعي من خلال عدم استقرار غلة المحاصيل الزراعية, حيث تناقصت الإنتاجية الزراعية للمحاصيل المطرية كالقمح بنسبة 38.59% والشعير بنسبة 76.35% والعدس بنسبة 33.01% خلال الفترة 1990–2000 م نتيجة موجة الجفاف التي شهدتها سورية (NAPC, 2002).

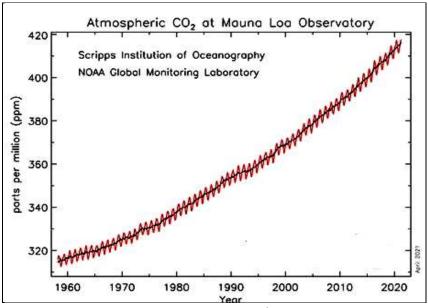
b ارتفاع مستوى سطح البحر العالمى:

ترافق الاحترار العالمي آنف الذكر مع ارتفاع متوسط مستوى سطح البحر العالمي ما بين (20.3–22.8) سم منذ عام 1880, كما أن معدل الارتفاع هذا آخذ في التسارع. فقد تضاعف من 0.15 سم/ سنوياً خلال القرن العشرين إلى 0.36 سم/ سنوياً ما بين كما أن معدل الارتفاع هذا آخذ في التسارع. فقد تضاعف من 0.15 سم/ سنوياً ما بين (205–2015) سم ما بين عامي 2020-2000 (205–2015) سم ما بين عامي 1920-2000 كما حدث على مدار المائة عام الماضية أي ما بين عامي 1920–2020 (https://www.climate.gov). يبين الشكل المرافق رقم (1) التغيرات في مستوى سطح البحر خلال فترات زمنية متباينة, حيث كان معدل الارتفاع 2.27 ملم/ السنة ما بين المرافق رقم (1) التغيرات في مستوى سطح البحر خلال الفترة ما بين 2013–2022 م, أي بمقدار زيادة 2.35 ملم/ السنة بالمقارنة مع الفترة السابقة. ويُرجَح أن يؤثر ارتفاع مستوى سطح البحر على القطاع الزراعي بالتأثير المباشر على المساحات الزراعية وربما التسبب باختفاء هذه المساحات في المناطق الساحلية، إلى جانب زيادة تصل إلى ثلاث مرات في ملوحة مياه الري والترب.

الشكل (1): تغيرات مستوى سطح البحر العالمي خلال الفترة (1993- 2023) (المصدر: WMO, 2023)

Fayad -Syrian Journal of Agriculture Research- SJAR 12(1): 300-314-February 2025

c انبعاث غازات الدفيئة:

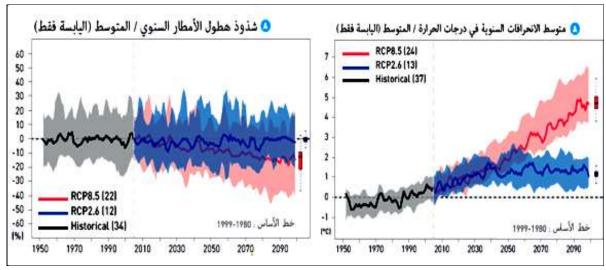

يعد قطاع الزراعة والحراج والاستخدامات الأخرى للأراضي AFOLU مسؤولاً عن حوالي ثلث انبعاثات غازات الدفيئة من إجمالي الانبعاثات الصافية بشرية المنشأ عالمياً, حيث أسهم بحوالي 13% من انبعاثات ثاني أكسيد الكربون CO_2 و 44% من انبعاثات الميتان CH_4 , إذ تمثل الحيوانات المجتّرة والتوسع في زراعة الأرز عاملاً هاماً في ارتفاع نسبة تركيز الميتان في الغلاف الجوي، كما أسهم قطاع الزراعة بنحو 81% من انبعاثات أكسيد النيتروز N_2O_2 من خلال تحلل الأسمدة وذلك خلال الفترة N_2O_2 00 من الجدول رقم (1). في حين أسهم تغيير استخدام الأراضي بحوالي 18% (IFAD, 2011).

الجدول (1): دور الزراعة والحراج واستخدام الأراضي في انبعاثات غازات الاحتباس الحراري عالمياً

أكسيد النيتروز N2O	الميثان CH4	ثاني أكسيد الكربون		
		CO_2		
8.7 ±2.5 مليون طن	43± 161 مليون طن	انبعاثات بشرية المنشأ 5.2 ± 6 غيغا طن		
%81	%44	%13	النسبة المئوية	
2.3± 0.7 غيغا طن	4.5 ±1.2 مليون طن	فئ ثاني أكسيد الكربون ــــــــــــــــــــــــــــــــــــ		
2.9-/ + 12.0 غيغا طن من مكافئ ثاني أكسيد الكربون		إجمالي الانبعاثات الصافية لغازات الاحتباس الحراري بشرية		
سنوياً		المنشأ		
%23		النسبة المئوية		

IPCC, 2020. : المصدر

أعلنت الإدارة الوطنية للمحيطات والغلاف الجوي (NOAA) خلال شهر نيسان لعام 2023 م في محطة المحطة المرجعية للمراقبة العالمية للغلاف الجوي التابعة لمنظمة الأرصاد الجوية العالمية WMO عن تسجيل Ppm424.83 من تركيز CO2 والذي يمثل الحد الأقصى الموسمي لتركيز ثاني أكسيد الكربون (WMO,2023), الشكل رقم(2). مما يدعو إلى تكثيف جهود العمل المناخي وتقليل انبعاثات غازات الاحتباس الحراري, وتعزى معظم هذه الانبعاثات إلى التعدي على الغابات عالمياً, لكن هذا الرقم يمكن أن ينخفض في حال تم تعويض الغطاء النباتي. إذ أن للحرائق التي تشهدها دول العالم أثر بالغ الأهمية في طرح المزيد من غازات الاحتباس الحراري في الجو, ويساهم كل من إزالة الغابات وتدهورها بحوالي 71% من الانبعاثات العالمية لغازات الدفيئة (FAO,2018). كما تشير التقديرات إلى تدهور حوالي [5–12] مليون هكتار سنوياً في البلدان النامية بسبب إزالة الغابات وحرق الكتلة الحيوية والممارسات الزراعية الخاطئة مثل تكرار الحراثة والتطبيق غير الملائم للمغذيات إحصائيات دائرة الحرائق بد من الإشارة هنا إلى الحرائق التي تعرضت لها سورية, وبشكل خاص الساحل السوري, حيث بينت إحصائيات دائرة الحرائق؟ أر سنة ومتوسط عدد الحرائق أر سنة ومتوسط عدد الحرائق؟ إذ بلغ متوسط عدد الحرائق؟ إذ بلغ متوسط عدد الحرائق 12 حريقاً/ سنة وبمتوسط مساحة محروقة قدرها 813 ه/ سنة (et al., 2022 ولنام الغابة ذكية مناخياً من خلال الإدارة الذكية المثلى والأخذ بعين الاعتبار التغيرات المناخية المحتملة.



الشكل (2): مستويات غاز ثاني أكسيد الكربون CO_2 في الغلاف الجوي منذ عام CO_2 (المصدر: . CO_2)

2. المؤشرات المناخية في المنطقة العربية وسورية:

جرى استخدام المؤشرات المناخية (التغيرات في مؤشرات درجة الحرارة, التغيرات في مؤشرات الهطل) لتقييم الاتجاهات المناخية في المنطقة العربية خلال الفترة ما بين 2081 - 2000 م مقارنة مع الفترة الأساس 1986 - 2005 م, وتبين من خلال التحليل تراجعاً إجمالياً في عدد الأيام الممطرة التي تفوق فيها كمية الهطل المطري 10 ملم و20 ملم, كما تُظهر التوقعات زيادة في عدد أيام الجفاف لاسيما في منطقة البحر المتوسط مما يعكس زيادة في مدة موسم الجفاف, إضافة إلى تراجع نوبات البرد والاتجاه نحو الاحترار في مختلف أنحاء المنطقة العربية(الإسكوا, 2015).

كما تشير التوقعات الحالية من النماذج المناخية عالية الدقة إلى حدوث انخفاض كبير في كمية الأمطار السنوية فوق منطقة حوض المتوسط بما في ذلك انخفاض كميات الأمطار الشتوية مع حلول عام 2100 م بما يقارب 35% مقارنة بالقرن العشرين(العشرين المتوقعة في (al., 2005). وستكون المشكلة في تناقص كمية الهطل المطري خلال الأشهر الماطرة. يبين الشكل رقم (3) التغيرات المتوقعة في كل من درجة الحرارة السنوية والهطل المطري في حوض البحر المتوسط حتى نهاية القرن الحادي والعشرين بالنسبة للفترة المرجعية (2) متوسط مجموعة النماذج (EURO- CORDEX) ذات الدقة المكانية (a), °0.11 و RCP 2.6 و MedECC,2020) RCP 8.5 و MedECC,2020).

الشكل (3) : التغير المتوقع في درجة الحرارة والهطل المطري في منطقة البحر المتوسط

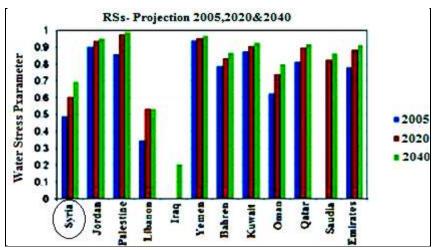
(المصدر: ملخص لواضعى السياسات, ص13-14)

وهذا ما يتفق مع الدراسة التي أعدها الشقور وآخرون (2022), إذ بين الاتجاه العام للهطل المطري السنوي في سورية خلال الفترة الممتدة ما بين 1960-2021 م حسب اختبار مان – كيندال Mann- Kendall test الخفاضاً ذو دلالة معنوية في المناطق الجافة وشبه الجافة (كما في محطة القامشلي P=0013 ومحطة القنيطرة P=0.001, وذو دلالة غير معنوية في المناطق شبه الرطبة (كما في محطة إدلب P=0.388), وتبين من خلال الاختبار أيضا زيادة في هطل الأمطار الموسمية في المناطق الساحلية والجبلية خلال فصل الشتاء, كما أشار تحليل الاتجاه الشهري للهطل المطري إلى انخفاض معدل هطل الأمطار في سورية خلال أشهر (أيلول وتشرين الثاني) اتجاهاً متزايداً للهطل أقل من شهر كانون الثاني. مما يشير إلى تأثر سورية بالمنظومة الجوية العالمية والتغير الحاصل في عناصرها.

من خلال إجراء مقارنة بسيطة لمعدل الهطل المطري في عدد من المحطات في سورية خلال ثلاث فترات زمنية, لوحظ أن هناك تناقصاً في معدل الهطل المطري في محطات المناطق شبه الجافة والجافة خلال السنوات العشرة الأخيرة, وهذا ما سينعكس على إنتاج المحاصيل في تلك المناطق. كما هو مبين في الجدول رقم (2).

=== -== -== -== -== -(2) 03 ÷-							
المعدل (1950- 2020)	المعدل (1950- 2010)	المعدل (1950- 2000)	منطقة الاستقرار الزراعي	المحطة			
130.5	133.1	139.2	خامسة	دمشق			
339.5	337.2	336.8	ثانية	حماة			
382.3	427.5	424.8	أولى ب	حمص			
165.9	215.2	198.9	رابعة	الرقة			
256.6	272.8	281.7	ثانية	الحسكة			
160.5	155.7	158	خامسة	دير الزور			
460.3	364.1	345.2	ثانية	حلب			
433.7	503.1	503.7	أولى ب	إدلب			
344.6	332.5	348.1	ثانية	السويداء			
281.6	259.5	262.4	ثانية	درعا			

الجدول (2): مقارنة لمعدل الهطل المطري خلال ثلاث فترات زمنية


المصدر: وزارة الزراعة والإصلاح الزراعي, مديرية الأراضي والمياه, قسم المناخ. دمشق. سورية.

الأثر المتوقع للتغيرات المناخية في الإنتاج الزراعي في سورية:

أوضحت دراسة قام بها المركز العربي لدراسة المناطق الجافة والأراضي القاحلة ACSAD لتقييم أثر التغيرات المناخية المحتملة على إنتاج محصول القمح المطري والمروي في سورية باستخدام النموذج الرياضي (CROPWAT) أن زيادة درجة الحرارة بمقدار

2.5°م سيؤدي إلى تناقص الهطل المطري بنسبة 12%, مما سيزيد الاحتياج المائي من 428 ملم إلى 469 ملم بالنسبة لمحصول القمح المروي, وزيادة الاحتياج المائي من 565 ملم إلى 614 ملم بالنسبة لمحصول القمح المروي, الأمر الذي سينعكس سلباً على إنتاجية المحصول وانخفاضها بنسبة 14% للقمح المطري وبنسبة 10% للقمح المروي. الأمر الذي يهدد الأمن الغذائي ويرفع من أسعار الغذاء (أكساد, 2008). كما أشارت التوقعات إلى أن متوسط تكلفة تغير المناخ إلى أدنى مستوياته في الشرق الأوسط بحلول العام 2100 مسيعادل خسارة حوالي (1.9- 2.5)% من الناتج المحلي الإجمالي(1907, 2007) وتراجع الإنتاجية الزراعية بنسبة 32% (FAO, 2005).

كما أجربت دراسة أخرى لمعرفة درجة الإجهاد المائي الذي يمكن أن تتعرض له الدول العربية ومن بينها سورية, وتبين من خلالها أن الدول كافة ستكون تحت وطأة إجهاد مائي متطور بحلول عام 2040 م(أكساد, 2010) كما هو مبين في الشكل رقم (4). وفي السياق ذاته, فقد أعد تقرير عالمي حول الدول التي ستعاني من الإجهاد المائي باختلاف درجاته (منخفض, متوسط, مرتفع) بحلول عام 2050 م اعتماداً على سيناريوهات تغير المناخ العالمي وتقرير (IPCC,2007), وتبين من خلاله أن سورية ستكون تحت وطأة إجهاد مائي شديد(http://www.worldenergy.org), مما سيشكل تحدياً كبيراً لمناطق الزراعة المطرية والمروية على حد سواء في ظل التغيرات المناخية المتوقعة.

الشكل (4): درجة الإجهاد المائي المتوقع في الدول العربية حتى عام 2040 (المصدر: أكساد, 2010 م)

وبالتالي فإن التغيرات التي ستطرأ على العناصر المناخية ستؤدي حتماً إلى تذبذب الإنتاج الزراعي وإلى خسارته في بعض السنوات, لاسيما بالنسبة للمحاصيل الأشد حساسية للتغير المناخي, حيث إن محاصيل الحبوب الرئيسية قد بلغت العتبة القصوى لتحملها للحرارة، وإذا ما زادت درجات الحرارة بمعدل [1.5-2] م° يمكن لهذه المحاصيل أن تتضرر بشدة، كما سينعكس ذلك بصورة مباشرة وغير مباشرة على الإنتاج الحيواني وستتأثر الإنتاجية الحيوانية سلباً بارتفاع درجات الحرارة وبشكل خاص السلالات ذات المردود الأعلى بصورة أكبر من تأثر السلالات المحلية الأكثر صلابة ومقاومة، كما سيتعدى ذلك التأثير إلى الآفات والأمراض التي يمكن أن يتعرض لها هذا الإنتاج(IFAD, 2012), لذلك لابد من تبني استراتيجيات محددة تتناسب والتغيرات المناخية العالمية المتوقعة لضمان إنتاج زراعي مستدام ذكي مناخياً.

4. مفهوم الزراعة الذكية مناخيا:

بغية المساهمة في تحقيق أهداف التنمية المستدامة في ظل تغير المناخ، تحتاج نظم الإنتاج الزراعي إلى التصدي في آن واحد لثلاثة تحديات متشابكة, هي زيادة الإنتاجية والدخل في الزراعة على نحو مستدام؛ وبناء القدرة على الصمود في وجه آثار تغير المناخ؛ والمساهمة في التخفيف من حدة تغير المناخ حيثما أمكن ذلك .وتم تطوير الزراعة الذكية مناخياً كإطار لمواجهة هذه التحديات الثلاثة (FAO, 2018).

يشير مفهوم الزراعة الذكية مناخيًا (Climate- Smart Agriculture (CSA) إلى تلك النُظُم الزراعية عالية الإنتاجية والتي تترك بصمات بيئية منخفضة. وتعزِّز خيارات إدارة هذه النُظُم عملية نقل الكربون الجوي، أو ثاني أكسيد الكربون 2012 إلى التربة من أجل الخزن الطويل الأجل، ممًّا يحدُّ من انبعاثات الغازات الدفيئة في الغلاف الجوي (مولر, 2018).

تهدف الزراعة الذكية مناخياً إلى معالجة مسألة الأمن الغذائي وتحديات تغير المناخ في الوقت ذاته. وهي تسهم بذلك في تحقيق أهداف النتمية الزراعية ومتطلبات الأمن الغذائي من جهة, وتدعم تكيف القطاعات الزراعية مع التغيرات المناخية المتوقعة وتعزيز قدرة نظم الإنتاج والمجتمعات المحلية على مواجهة الظروف المناخية المتوقعة من جهة أخرى.

صيغت سيناريوهات عدة عالمياً حول إمكانية الاستفادة من الطاقة النووية Nuclear Energy في مجال الزراعة الذكية مناخياً باستخدام نماذج التقييم (MINICAM) و(MERGE) و(MINICAM) ورحققت الأهداف في تلك السيناريوهات من حيث انخفاض الطلب على الطاقة, رفع إنتاج الطاقة من الكتلة الإحيائية وغير الإحيائية المتجددة [الطاقة الشمسية, الرياح والطاقة النووية]، من خلال النقاط الكربون وتخزينه. وتمثل دور الطاقة النووية بالحدِّ من انبعاثات ثاني أكسيد الكربون 202 في كلِّ السيناريوهات (وايغلي, 2018). يمكن للزراعة الذكية مناخياً أن تسهم بصورة إيجابية في تخفيف انبعاثات ثاني أكسيد الكربون باستخدام وقود الكتلة المتصاصه، وفي تقليص احتراق الوقود الأحفوري، إذ يمكن استبدال نحو 20% من استهلاك الوقود الأحفوري باستخدام وقود الكتلة الحية، فالأعشاب سريعة النمو والبذور الزيتية والمخلفات الزراعية تتيح إمكانات كبيرة كبدائل لتوليد الطاقة وتعزيز خصوبة التربة من خلال زيادة المادة العضوية وزيادة احتفاظ التربة بالكربون وبالتالي التقليل من انبعاث الكربون(سليمان, 2019). كما تم وضع عدد من الأليات المالية لدعم الدول في مساعيها للتكيّف مع تغيّر المناخ والتخفيف من آثاره, وقد أُعلِنَ عام 2016 عن أنّ الصندوق الأخضر المناخ في صدد الموافقة على مشاريع بقيمة 2.5 مليار دولار، بما في ذلك صياغة خطط التكيّف الوطنية لبعض البلدان بميزانية تصل إلى 3 مكريين دولار لكلّ اقتراح مُقدَّم (الإسكوا, 2017).

أ- متطلبات الزراعة الذكية مناخياً وآلية تطبيقها:

تعتمد الاستراتيجيات المتبعة للتكيف مع التغيرات المناخية على درجة الإجهاد التي يمكن أن يتعرض لها النظام الزراعي, وكذلك آليات التكيف التي يمتلكها المزارعون ومدى تأثير كل عامل مناخي على المحاصيل الزراعية, ويعد التكثيف المستدام لإنتاج المحاصيل الأساس الذي تقوم عليه زراعة المحاصيل الذكية مناخياً. ويتحقق ذلك من خلال المحافظة على التربة والإدارة المثلى للموارد المائية واستخدام البذار عالي الجودة للأصناف المتكيفة وزراعة الأنواع النباتية المترافقة والإدارة المتكاملة للآفات واستخدام المكننة بشكل أقل وبالتالي تقليل استهلاك الوقود(FAO, 2018).

يتطلب تطبيق استراتيجيات الزراعة الذكية مناخياً أموراً عدة منها استخدام الأصناف قصيرة الدورة الزراعية والبذور المقاومة للجفاف واستخدام تقنيات الري الذكي والتوسع في استخدام تقنيات الزراعة العضوية والزراعة التجددية واستنباط أصناف زراعية مقاومة للجفاف والملوحة والممارسات الزراعية الأخرى مثل الزراعة الحافظة للموارد والحراجة الزراعية. إن ممارسة الزراعة الحراجية والاستغناء عن الحراثة يمكن أن تكون لها آثار إيجابية على التربة من خلال المحافظة على رطوبتها لاسيما خلال سنوات الإجهاد المائى, إذ تساهم هذه الممارسات في تحسين المحاصيل وتنويع الإنتاج وبالتالي زيادة قدرة المزارعين على الصمود في وجه

التحديات المناخية, كما أن لها فوائد للتخفيف من تغير المناخ، لأنّ انبعاثات غازات الدفيئة من الزراعة الحافظة للموارد أقل ولأنّ هذه الزراعة تحسّن احتجاز وتخزبن الكربون في التربة (MEDECC, 2020).

كما تتطلب الزراعة الذكية مناخياً (الزراعة المستدامة) حوكمة مسؤولة وفعالة وتشاركيه بين الأطراف المعنية, إضافة إلى رفع مستوى الوعي الوطني بخطورة التغير المناخي العالمي وأثره في مناخ سورية والضرر الذي يمكن أن يلحقه بالإنتاج الزراعي وبالتالي تهديد الأمن الغذائي, ولا يمكن أن نغفل الدور الحكومي في دعم هذه الممارسات الزراعية وتبنيها كنهج لاستدامة الإنتاج الزراعي وضمان الأمن الغذائي.

ب- الزراعة الذكية مناخياً ودورها في صيانة التربة:

تعزّز نُظُم الزراعة الذكية مناخياً من قدرة التربة على خزن المغزّيات والمياه وبالتالي زيادة محتوى المواد العضوية داخلها, مما يجعلها أكثر مقاومة لتغير المناخ. وبالتالي يمكن من خلال مراعاة محتوى التربة من النتروجين تطبيق كميات أقل من السماد وتعزيز كفاءة استخدام النتروجين(مولر, 2018), كذلك تسهم بعض التقنيات الزراعية في تحسين خصوبة التربة على مستوى المزارع الصغيرة عن طريق زراعة الأنواع النباتية ثنائية الغرض والتي تؤمن المتطلبات الغذائية للإنسان من جهة، واستخدام مخلفاتها في صناعة الكمبوست العضوي المخصب من جهة أخرى, أي إعادة تدوير المخلفات الزراعية. يبين الجدول رقم (3) أثر إتباع الطرق البيولوجية المكثفة والمستدامة في المزارع الصغيرة, فقد ساهمت في إعادة بناء التربة بسرعة أكبر مما هي عليه بدون تطبيق تلك الطرق المستدامة, كما ساهمت في زيادة خصوبة التربة والحفاظ على رطوبتها وبالتالي تقليل استهلاك المياه وكذلك تقليل استهلاك الأسمدة الكيميائية واستبدالها بالكمبوست العضوي, كما قللت من استهلاك الطاقة بنسبة كبيرة الأمر الذي انعكس إيجاباً على الذخل والإنتاجية في وحدة المساحة.

الزراعة التجددية

بناء التربة

سر عة بناء تعادل 60 مرة سر عة الطبيعة
خصوبة التربة

استهلاك المياه

استهلاك الأسمدة

استهلاك الطاقة

الستهلاك الطاقة

الدخل

الدخل

الدخل

الاسلام

الجدول (3): أثر الممارسات الزراعية المستدامة على التربة

المصدر: وزارة الزراعة والإصلاح الزراعي, مديرية مكتب الإنتاج العضوي, تقارير غير منشورة, 2022 م.

ت- تطبيق أساليب الزراعة الذكية مناخياً في سورية:

ظهرت نواة الزراعة الذكية المناخية في سورية من خلال مشاريع الزراعة التجددية Regenerative Agriculture (وهي مجموعة من الممارسات في الزراعة والرعي والتي تقوم بإعادة بناء المادة العضوية في التربة وتحسين دورة المياه والتنوع الحيوي وتخزين الكربون وعكس تغيّر المناخ) التي تم تنفيذها بالتعاون بين برنامج الأمم المتحدة الإنمائي UNDP ووزارة الزراعة والإصلاح الزراعي (مديرية مكتب الإنتاج العضوي) في ست محافظات هي (ريف دمشق, اللاذقية, طرطوس, السويداء, القنيطرة, حلب) على مستوى الحيازات الصغيرة أو المزارع, ففي محافظة اللاذقية على سبيل المثال بلغت المساحة المزروعة وفق آلية الزراعة التجددية 15 دونماً وعدد المزارع المستهدفة 22 مزرعة, لكنها وبالرغم من صغر المساحة المطبقة عليها إلا أنها شكلت خطوة هامة في إطار التكيف مع التغيرات المناخية العالمية من جهة, واستدامة الإنتاج الزراعي وزيادة الإنتاجية والدخل من جهة ثانية. كما أنها استطاعت إحداث فروق جوهرية بالمقارنة مع طرق الزراعة التقليدية. وأهم الممارسات التي تم تطبيقها (خل الخشب والبيوشار Average-deep and deep-Beds, حفظ البذار

المحلية Saving local Seeds, الزراعات المترافقة Companion Planting, المفاعل الحيوي Saving local Seeds, الكمبوست , الغنية بالأحياء الدقيقة Microorganism–Rich Compost, شاي التبغ Tobacco Tea, السماد السائل وفطر التريكوديرما , Liquid Manure & Trichoderma fungi , البيوت المحمية العضوية LAB & IMO ,Organic Greenhouses بكتيريا حمض اللاكتيك, اختبار جودة التربة Soil Testing عمليات التصنيع الغذائي food processing).

5- النتائج والمناقشة:

- نتائج تطبيق الزراعة التجددية في سورية:

a. استخدام خل الخشب:

يتميز خل الخشب Wood vinegar بأنه مركب عضوي قابل للتحلل يتكون من مجموعة من الأحماض العضوية لونه بني أو معتم. المكونات الأساسية فيه الماء, حمض الاسيتيك, الأسيتون الميثانول, القطران, الفورم ألدهيد. وهو من أهم التقنيات المطبقة في جميع المزارع المستهدفة, لما له من دور في مكافحة الآفات ورفع مناعة النبات وتحسين الخصائص المحصولية, كما يمكن إضافته مع مياه الشرب للدواجن والأبقار فيقلل من الأمراض والنفوق بينها, يبين الجدول رقم (4) نسب الاستخدام على أنواع المحاصيل المختلفة.

الجدول (4): نسب استخدام خل الخشب على أنواع المحاصيل

مع مياه السقاية	الرش الورقي	نوع المحصول
1 لتر/ 1000 لتر ماء	1 لتر/ 500 لتر ماء	أشجار مثمرة
2 لتر/ دونم	1 لتر/ 700 لتر ماء	محاصيل حقلية
3 لتر/ دونم	1 لتر/ 500 لتر ماء	خضراوات

المصدر: وزارة الزراعة والإصلاح الزراعي, مديرية مكتب الإنتاج العضوي, تقارير غير منشورة, 2022 م.

لبيان أثر استخدامه في مكافحة الآفات, أجريت العديد من التجارب على الخضار في المزارع المستهدفة بالسويداء من قبل دائرة الإنتاج العضوي, وتبين عند المعاملة بخل الخشب موت 75% من الأكاروست في اليوم الثاني بعد الرش, كما تم القضاء تماماً على البياض الدقيقي في بدايته عند المعاملة بتركيز 250 مل لكل 20 لتر ماء. كما تبين أيضاً عند تطبيق خل الخشب على نوعين من محاصيل الخضار (باذنجان, بامياء) في المزارع المستهدفة في حلب دوره في مكافحة الآفات, كما هو موضح في الجدول المرافق رقم (5).

الجدول (5): نتائج استخدام خل الخشب في مكافحة الآفات بطرق الزراعة التجددية في حلب

النتيجة	فترة بدء ظهور النتائج بعد الرش	عدد مرات الرش	تركيز خل الخشب	نوع الإصابة	النوع النباتي
اختفت	يومين	مرة	10 مل/ لتر ماء	تريبس وجاسيدات	باذنجان
اختفت	3 أيام	مرة	20 مل/ لتر ماء	مَنٌ وديدان خضراء	بامياء

(المصدر: وزارة الزراعة والإصلاح الزراعي, مديرية مكتب الإنتاج العضوي, تقارير غير منشورة, دمشق, 2022م)

تبين من خلال المعاملة بخل الخشب كمبيد عضوي دوره في زيادة المقاومة للظروف المناخية القاسية كالصقيع وموجات الحر الشديد, فعند رش أشجار الحمضيات بخل الخشب قبل الصقيع كانت النتيجة عدم تأثر ومقاومة تلك الأشجار للصقيع, كما أنه يقلل من حاجة النبات للماء وبالتالي يساعده في مقاومة الجفاف, وعند معاملة محصول القمح بخل الخشب سواء بنقع البذور أو الرش الورقي أعطى عدد جذور اكبر للنبات مع مساحة مسطح ورقي اكبر ونمو أقوى وبالتالي نبات أكثر إنتاجية ومقاومة لإجهاد الملوحة والعطش (مديرية مكتب الإنتاج العضوي, 2022), إلا أن الدور الأهم يكمن في مكافحة الآفات وبالتالي التقليل قدر

الإمكان من استعمال المبيدات الكيميائية وضمان الحصول على منتج زراعي آمن, وكذلك زيادة خصوبة التربة لاحتوائه على العناصر الغذائية وبالتالي يقلل الحاجة الى استخدام الأسمدة الكيميائية بنسبة تصل الى 50%.

b. الأحواض التكثيفية:

تعد الأحواض التكثيفية Intensive beds أحد ممارسات الزراعة التجددية التي تم تنفيذها في المزارع المستهدفة, يتم تجهيزها على مراحل عدة, حيث يتم أولاً تجهيز الحوض من خلال وضع ثلاث طبقات (نباتات خضراء – نباتات يابسة – زبل مختمر), ثم تأتي المرحلة الثانية وهي سقاية الأحواض لحد الإشباع وتغطيتها بالنايلون لمدة عشر أيام لتسهيل التخلص من الأعشاب الضارة قبل الزراعة, فالمرحلة الثالثة زراعة الأحواض بالبذور المحلية المنتخبة (البلدية), والمرحلة الرابعة الأخيرة هي مرحلة الإنبات والإنتاج. يبين الجدول رقم (6) نتائج تطبيقها على محصول البندورة في السويداء, حيث أدت إلى إحداث فرق جوهري في الإنتاج.

الجدول (6): مقارنة الأحواض التكثيفية مع الزراعة التقليدية على نبات البندورة في السويداء

مقارنة إنتاج 30 شتلة بندورة عضوي				
الزراعة بنظام الأحواض المكثفة حيويا موسم 2022	نظام الزراعة التقليدي في أثلام موسم 2021			
175 ئغ	100 كغ			

(المصدر: وزارة الزراعة والإصلاح الزراعي, مديرية مكتب الإنتاج العضوي, تقارير غير منشورة, دمشق, 2022 م)

يبين الجدول رقم (7) نتائج تطبيق الأحواض التكثيفية على محصول الباذنجان في حلب, وكانت النتائج إيجابية من حيث عدم وجود أمراض وإصابات كما حققت إنتاجية مرتفعة في وحدة المساحة على النحو الآتى:

الجدول (7): مقارنة الأحواض التكثيفية مع الزراعة التقليدية على نبات الباذنجان في حلب

نبات الباذنجان					
سماد كيميائي	أحواض بإضافة السماد البلدي	أحواض بإضافة الكمبوست			
خطوط	خطوط	خطوط	نوع الحوض		
11 م ²	11 م ²	11 م ²	مساحة الزراعة		
35 نبات	35 نبات	35 نبات	عدد النباتات		
منتصف أيار	منتصف أيار	منتصف أيار	موعد الزراعة		
3 مرات	3 مرات	لا يوجد	عدد مرات الترقيع		
منتصف حزيران	بداية تموز	منتصف حزيران	موعد الإزهار		
24/06/2022	10/07/2022	22/06/2022	بداية الإنتاج		
سماد بلد <i>ي</i> + 46%	طبقات مادة خضراء وجافة	طبقات مادة خضراء وجافة وسماد بلدي (غنم)	التسميد		
يوريا	وسماد بلدي (غنم)	وإضافة كومبوست حول النباتات			
نمل قارض+ عناكب+	نمل قارض+ اصفرار أوراق	<u>لا يوجد</u>	الأمراض		
لفحة			والإصابات		
مبيد فطري وحشري	سماد سائل (رش ورقي، سقي)	سماد سائل (رش ورقي، سقي)	مخصبات ومواد		
	+ مبيد حشري		المكافحة		
37.5 كغ	31.3 كغ	44.7 كغ	الإنتاجية		

المصدر: وزارة الزراعة والإصلاح الزراعي, مديرية مكتب الإنتاج العضوي, تقارير غير منشورة, دمشق, 2022 م

تتمتع ممارسات الزراعة التجددية بجدواها الاقتصادية, إذ أسهمت في تقليل تكاليف الإنتاج في المزارع المستهدفة, ولبيان ذلك تم إجراء مقارنة بين بيت بلاستيكي مزروع بطريقة الزراعة التجددية مع آخر شاهد مزروع بطريقة الزراعة التقليدية في محافظة طرطوس بمساحة 250 م² لكل بيت بلاستيكي, يبين الجدول رقم (8) أن تكاليف المواد المضافة قبل الزراعة في البيت التقليدي تعادل تقريباً ضعفي تكلفة البيت التجددي, ولوحظ الأمر ذاته بالنسبة لتكلفة المواد المضافة بعد الزراعة, حيث بلغت تكلفة البيت التقليدي حوالي ضعفين ونصف الضعف تكلفة البيت التجددي, وبالتالي فإن الزراعة بالطريقة التجددية عملت على إحداث فرق

جوهري من حيث تكاليف الإنتاج, كما كانت أغلب المواد المستخدمة سواء ما قبل أو ما بعد الزراعة ذات منشأ عضوي وبالتالي الحصول على منتج زراعي مستدام. وكان الإنتاج متقارب بين كل من طريقتي الزراعة التقليدية والتجددية.

الجدول (8): يوضح مقارنة التكاليف بين بيت مزروع بالطريقة التجددية وبيت تقليدي

التكلفة الإجمالية	الْدِينَ الْدِينَاءِ	التكاليف (السعر)	المواد المضافة بعد الذراعة	التكاليف (السعر)	المواد المضافة قبل الزراعة	أوجه المقارنة
تكاليف	عدد مرات القطاف في الزراعة التقليدية 8 مرات	300	سماد عالي	270	زرق دواجن	البيت
قبل وبعد	خلال الموسم, إنتاجه 1500 كغ/ البيت	00	الفوسفور .	000	/30/ كيس	التقليدي
الزراء		100 000	مخصب عضو ي أجنبي			
ة		000	٠	350	15 كغ سوبر	
		300	سماد متوازن	00	فوسفات	
		00	سمد منوارن			
				800	2 كغ كبريت +	
				0	فارس للتعفير	
		200 00	أسمدة ورقية و أحماض أمينيه	100	2 كغ فايديت 	
		500	احماص امینیه کبریت و نحاس	800	حبيبي 2 كغ فطر	
		00	حبریت و تحاس عضوی	0	2 کے نظر التریکودیرما	
			چې	200	250 شتلة	
			4 1. 1 5. 4	000	مطعمة	
		100 000	مبيدات (للعناكب- الحشر ات)			
9510	المجموع الكلي	330	مجموع تكاليف	621	و تكالدف ما قبل	2020
00	المبعوع المتي	000	مبعوع تشيف بعد الزراعة	000	مجموع تكاليف ما قبل الزراعة	
تكاليف	عدد مرات القطاف في الزراعة التجددية 7 مرات,	180	سماد سائل +فطر	270	زرق دواجن	البيت
قبل	إنتاجه 1300 كغ/ للبيت	00	التريكوديرما	000	/30/كيس	التجدد
وبعد		500	خل الخشب			ي
الزراء ة		00	7.50 5.15	000	11.70	
8		300 00	IMO +LAB	800	2 كغ فطر التربك دريرا	
		500	نحاس و کبریت	0	التريكوديرما	
		00	تحس وتبريت			
				100	ثمن بذار	
74 - 0	1×1:	160	. 11	000	• • • • • • · ·	
<u>5160</u>	المجموع الكلي	138	مجموع تكاليف	378	ع تكاليف ما قبل الزراعة	مجموع
<u>00</u>		000	بعد الزراعة	000	الرراعة	

المصدر: وزارة الزراعة والإصلاح الزراعي, مديرية مكتب الإنتاج العضوي, تقارير غير منشورة, 2022 م.

الاستنتاجات:

- تبين من خلال السيناريوهات المحتملة لتغير المناخ العالمي (ارتفاع متوسط درجة الحرارة وما يتبعها من تغير في العناصر المناخية الأخرى) أن مناخ سورية سيكون متأثراً بدرجة كبيرة, لذلك فالسبيل الأنجع الاستفادة من التجارب العالمية في التكيف مع التغيرات المناخية.
- أثبتت تجارب الزراعة التجددية في سورية كخطوة أولية للتكيف مع التغير المناخي نجاعتها وجدواها الاقتصادية مقارنة مع الطرق التقليدية وفي مكافحة الآفات وتقليل انبعاث الكربون وصيانة التربة, لذا فهي ذات دور مهم في عملية التنمية المستدامة.

التوصيات:

- العمل على توسيع مساحة تطبيق أساليب الزراعة التجددية وتبنيها كنهج يحقق الاستدامة في الإنتاج الزراعي بالتوازي مع تطبيق أسلوب الزراعة الحافظة والزراعة العضوية وتطبيق تقنيات الري الذكي.
- العمل على إنشاء مركز وطني لبحوث ودراسات التغيرات المناخية يضم ممثلين عن الوزارات كافة, إلى جانب خبراء من
 الهيئات البحثية للعمل على وضع إستراتيجية التكيف مع التغير المناخى العالمي وضمان تحقيق التنمية المستدامة.

المراجع:

- أكساد (المركز العربي لدراسات المناطق الجافة والأراضي القاحلة ACSAD)(2008). التغير المناخي وتأثيره على الموارد المائية في المنطقة العربية. المؤتمر الوزاري العربي للمياه, جامعة الدول العربية.
- أكساد (المركز العربي لدراسات المناطق الجافة والأراضي القاحلة ACSAD)((2010). الموارد المائية, التقرير الفني السنوي, جامعة الدول العربية.
- الحامولي, عادل إبراهيم محمد علي (2021). معارف المرشدين الزراعيين بظاهرة التغيرات المناخية بمحافظة كفر الشيخ, مجلة العلوم الزراعية المستدامة, مجلد 47، عدد 2، ص213- ص231.
- سليمان, سرحان احمد (2019). الزراعة الذكية مناخيا في مواجهة تأثير التغير المناخي على الأمن الغذائي المصري, الجمعية المصرية للاقتصاد الزراعي، المجلد (29)، العدد(4), ديسمبر (ب), ص1867-1892.
- الصندوق الدولي للتنمية الزراعية (IFAD), (2012). زراعة الحيازات الصغيرة الذكية بيئياً, ورقة عرضية للتنمية الزراعية 3, الصندوق الدولي للتنمية الزراعية, روما, إيطاليا, 23 صفحة.
- عبد القادر, ثائر هاشم عبد الرحمن (2012). تأثير التغيرات المناخية على واقع المحاصيل التصديرية في منطقة شمال الضفة الغربية وغور الأردن, رسالة ماجستير, جامعة القدس, القدس, فلسطين, ص1- 137.
- اللجنة الاقتصادية والاجتماعية لغربي آسيا (الإسكوا), (2015). التوقعات المناخية ومؤشرات الظواهر المناخية المتطرفة في المنطقة العربية, المبادرة الإقليمية لتقييم أثر تغير المناخ على الموارد المائية وقابلية تأثر القطاعات الاجتماعية والاقتصادية في المنطقة العربية, الأمم المتحدة, 22 صفحة.
- اللجنة الاقتصادية والاجتماعية لغربي آسيا (الإسكوا), (2017). تطوير قدرات البلدان العربية للتكيّف مع تغيّر المناخ باستخدام أدوات الإدارة المتكاملة للموارد المائية, الأمم المتحدة, 20 صفحة.
- المركز الوطني للسياسات الزراعية (NAPC), (2002). واقع الزراعة والغذاء في الجمهورية العربية السورية, وزارة الزراعة والإصلاح الزراعي بمساعدة مشروع الفاو GCP/SYR/006/ITA, دمشق, سورية, 230 صفحة.
- منظمة الأغذية والزراعة للأمم المتحدة (FAO), (EAO). دليل الزراعة المناخية, موجز الطبعة الثانية, روما, إيطاليا, 60 صفحة. المنظمة الحكومية المعنية بتغير المناخ (IPCC), تغير المناخ والأراضي (تقرير عن تغير المناخ، والتصحر، وتدهور الأراضي، والإدارة المستدامة للأراضي، والأمن الغذائي، وتدفقات غازات الاحتباس الحراري في النظم الإيكولوجية الأرضية), ملخص لصانعي السياسات, جنيف, سويسرا, ص1- 39.
- مولر, كريستوف (2018). دور التقنيات النووية في الزراعة الذكية مناخياً, مجلة الوكالة الدولية للطاقة الذرية, عدد شهر أيلول, ص24- 25.

وايغلي, توم م. ل (2018). دور الطاقة النووية في بلوغ غايات اتفاق باريس بشأن تغير المناخ, مجلة الوكالة الدولية للطاقة الذرية, عدد شهر أيلول, ص26.

وزارة الزراعة والإصلاح الزراعي (2022). مديرية الأراضي والمياه, دمشق, سورية. وزارة الزراعة والإصلاح الزراعي (2022). مديرية مكتب الإنتاج العضوي, دمشق, سورية.

- Al Shogoor S, S., Alrawas R, M., and Tarawneh E, R., (2022). Rainfall Trend Analysis by Mann–Kendall Test in Syria. The Arab World Geographer. Vol. 25 No. 4, Canada.
- Christensen J.H. et al. (2007). "Regional climate predictions". In S. Solomon et al. (eds.) Climate Change 2007: the Physical Science Basis. The Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change pp. 847-940. Cambridge: Cambridge University Press.
- Food and Agriculture Organization (FAO), (2005). Gender Perspectives on the Conventions: Biodiversity Climate Change and Desertification by Yianna Lambrou-Gender and Development Service Gender. Rome. Italy.
- Food and Agriculture Organization (FAO), (2017). Food and Agricultural organization statistics, Rome. Italy.

https://data.giss.nasa.gov/gistemp/

https://www.climate.gov/news-features/understanding-climate/climate-change-global-sea-level

- Ibrahim A, A., Haleme K, Gh., and Fayad R, A., (2022). Analytical Study of the Temporal and Spatial Distribution of Fires in Lattakia Region, Syria in the Light of the Current Climatic Changes, The Arab World Geographer. Vol. 25 No. 4, Canada.
- Intergovernmental Panel on Climate Change (IPCC) (2007 b). Global Climate Projections. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.
- MEDECC (Mediterranean Experts on Climate and environmental Change), 2020. Summary for Policymakers. In: Climate and Environmental Change in the Mediterranean Basin–Current Situation and Risks for the Future. First Mediterranean Assessment Report [Cramer W, Guiot J, Marini K (eds.)] Union for the Mediterranean, Plan Bleu, UNEP/MAP, Marseille, France, pp 11-40.

World Meteorological Organization(WMO)(2021). Reports, Geneva, Switzerland.

World Meteorological Organization(WMO)(2023). Reports, Geneva, Switzerland.

The Role of Climate-Smart Agriculture in Adapting to Climate Change

Reem Fayad*(1)

(1).Directorate of Agriculture and Agrarian Reform, Lattakia, Syria. (*Corresponding author: Dr. Reem Fayad. Email: fayadr788@gmail.com)

Received: 15/05/2023 Accepted:8/10/2023

Abstract:

Climate-smart agriculture is one of the most important strategies that enable adaptation to global climate changes and mitigate their effects on agricultural production in light of the increasing pressure on Natural resources and the increased need for food. It is not possible to achieve the requirements of sustainable agricultural development without adopting an approach that enables facing climatic challenges and guarantees the stability of agricultural production. In Syria, regenerative agriculture projects emerged as the nucleus of smart agriculture, which were implemented from February 2021 to September 2022 in six main governorates, which proved their effectiveness and achieved results. Positive application in terms of production, quality and economic feasibility, which can be considered an important step towards achieving sustainable agricultural production.

Keywords: climate change, climate smart agriculture, regenerative agriculture, sustainable development.