تأثير الري بالتناوب (مياه عذبة-مالحة) في بعض خصائص التربة وانتاجية محصول التريتيكال في منطقة حوض الفرات الأدنى

لبنى البشي * $^{(1)}$ وتميم العاصي $^{(1)}$ وعبد المنعم الحميد $^{(1)}$ وصالح المصطفى $^{(1)}$

(1). مركز بحوث دير الزور، دير الزور، الهيئة العامة للبحوث العلمية الزراعية، سورية.

(*للمراسلة: د.لبني البشي، البريد الإلكتروني: lubnabashshe@gmail.com)

تاريخ القبول:2023/01/20

تاريخ الاستلام:2022/10/24

الملخص:

نفذت التجربة في محطة بحوث سعلو العائدة للهيئة العامة للبحوث العلمية الزراعية في مدينة دير الزور السورية بهدف دراسة تأثير نوعية مياه الري في تطور ملوحة التربة وفي انتاجية محصول التربتيكال. صمم البحث على أساس القطاعات العشوائية الكاملة وتكونت التجربة من ثلاث معاملات من مياه الري (عذبة، مالحة، تناوب) بثلاثة مكررات خلال موسم (2018-2019). أظهرت النتائج تراجعاً معنوياً في الانتاجية بزيادة ملوحة مياه الري حيث بلغ المردود في المعاملات المائية من الغلة البيولوجية (11.29،11.59) طن/ه للمعاملات الثلاثة على التوالي، كما بلغ المردود من الغلة الحبية (Ec=1.12 dS/m) طن/ه على التوالي. وأدى الري بمياه عذبة (المعاملة الكهربائية لمستخلص التربة 15 في نهاية الموسم الى (dS/m 0.47)، بينما تراكمت درجة الناقلية الكهربائية لمستخلص التربة 5:1 ووصلت الى dS/m 8.05 ، كما تراكمت الأملاح عند الري بالتناوب (المعاملة 13) وارتفعت درجة الناقلية الكهربائية لمستخلص التربة 15 ووصلت الى dS/m 8.05 ، كما تراكمت الأملاح عند الري بالتناوب (المعاملة 13) وارتفعت درجة الناقلية الكهربائية لمستخلص التربة 5:1

الكلمات المفتاحية: الري بالتناوب، مياه مالحة، التريتيكال، الغلة البيولوجية ، الغلة الحبية، الناقلية الكهربائية.

المقدمة:

تتحمل معظم النباتات درجات معينة من الملوحة يبدأ بعدها تأثير الملوحة على خفض الإنتاجية، بين (Qadir et al.,2004) أن استعمال نباتات متحملة للملوحة تعتبر إحدى تقنيات الاستصلاح لقابلية هذه النباتات على النمو في الترب المتأثرة بالملوحة حيث تعمل على تخفيض ملوحة الترب الملحية كما أن لجذورها دوراً في تحسين صفات التربة. بالإضافة الى استعمال محاصيل اقتصادية متحملة تحقق دخلا" للمزارعين مقارنة بالكلفة العالية لإنشاء شبكات الصرف(Dadshani, et al.,2004). وبينت الدراسات التي قام بها العديد من الباحثين (Hamdy,1998) و (Miles , 1987) إمكانية استخدام المياه المالحة في الري وخاصة في تواجد معدل مطري يزيد عن 220 مم وتوفر ظروف صرف ملائمة.

إن الاستعمال الأمثل للمياه المالحة يؤدي إلى تحويل مساحات جديدة من الأراضي الزراعية إلى أراضي منتجة للغذاء ويوفر الكثير من المياه العذبة المستعملة في الري. إن عملية التناوب في الري بين مياه عذبة ومياه مالحة تعد طريقة سهلة وليست بحاجة لخزانات لخلط نوعين من المياه، ويعد بعض العلماء أن هذا التناوب مهماً في المراحل الحساسة من عمر النبات حيث تعطى رية بمياه عذبة (الزعبي وآخرون،2014). طور مؤخراً مفهوم المناوبة بين الريات باستخدام مياه مالحة لعدد من الريات ومياه عذبة للري في بداية ونهاية الموسم الزراعي لتأمين غسل التربة وتحقيق أفضل إنبات(1989) FAO .

قام علماء تربية المحاصيل بتطوير بعض الأصناف من محصول الحبوب الجديد التربتيكال (القمحيلم)، الناتج من تهجين محصولي القمح و الشيلم والهدف من برامج تربية التربتيكال هو وإعطاء غلة جيدة من العلف ذو قيمة هضمية عالية، وإنتاج عال من الحبوب ذات نسبة بروتين مرتفعة قد تتفوق أحيانا على القمح والشعير (الحمداني، 2002).

تؤثر الملوحة في الخصائص المورفولوجية والتشريحية للنبات (Blum and Johnson, 1992) وتسبب برأي (1988) Vonshak ويعزي كل من Zeng و and Ross, 1992) التراجع في الغلة الحيوية عند المستويات الملحية الأعلى إلى ازدياد تركيز الأملاح الذوابة في منطقة انتشار الجذور، مما يؤدي إلى خفض الجهد المائي لمحلول التربة، فيقل فرق التدرج في الجهد المائي بين التربة وخلايا المجموع الجذري، مما يؤثر سلباً في معدل تدفق الماء وامتصاصه من قبل المجموع الجذري، فتصبح كمية المياه الممتصة غير كافية لتعويض الماء المفقود بالنتح من ، فتتعرض خلايا الأجزاء الهوائية (الأوراق والساق) إلى العجز المتمثل بتراجع جهد الامتلاء داخل خلايا الأجزاء الهوائية، مما يؤثر سلباً في معدل نموها، حيث يعد جهد الامتلاء بمنزلة القوة الفيزيائية التي تدفع جدر خلايا الجدر النباتية على الاستطالة. وينسب

(Soorentino, et al.,2002) التراجع الحاصل في الغلة الحبية عند النضج إلى تراجع كفاءة النبات التمثيلية بسبب تقلص حجم المسطح الورقي الفعال في عملية التمثيل الضوئي، ويمكن أن يعزى تراجع متوسط الغلة الحبية تحت ظروف الاجهاد للتربيتيكال وخاصة عند المستويات الملحية العالية إلى فترة امتلاء الحبوب. مما يؤثر سلباً في كمية المادة الجافة المنتقلة من المصدر (الأوراق والساق) إلى المصب (الحبوب)، لأن الماء هو الناقل الوحيد لنواتج التمثيل الضوئي من المصدر إلى المصب بالإضافة إلى قلة كمية المادة الجافة المتاحة خلال فترة امتلاء الحبوب، وبسبب تراجع كفاءة النبات التمثيلية تحت ظروف الإجهاد الملحي الشديد نتيجة ازدياد المقاومة المسامية حيث أن بلوغ أقصى درجات المقاومة للتراكيز العالية من الملوحة يكون كلما كانت المساحة الورقية متسعة أكثر، كل ذلك يؤثر سلباً في كمية الطاقة الضوئية الممتصة pintercepted light energy وآخرون، مخزونة في روابط المركبات العضوية (السكريات) المصنعة، مما يؤثر سلباً في معدل صافي التمثيل الضوئي (أرسلان و وآخرون،

ونظراً للازمة الحالية في مصادر المياه وشحتها يهدف البحث إلى:

أ. دراسة تأثير استخدام المياه (عذبة-مالحة-تناوب) في مردود محصول التريتيكال

ب. دراسة حركة الأملاح بالتربة وعلاقتها بملوحة مياه الري (مياه جوفية).

مواد البحث وطرائقه<u>:</u>

موقع الدراسة:

نفذت التجربة في محطة بحوث سعلو العائدة للهيئة العامة للبحوث العلمية الزراعية في مدينة دير الزور السورية التي تقع ضمن منطقة الاستقرار الخامسة حيث لا يتجاوز معدل الهطول المطري 161 ملم/السنة يتركز في الفترة الممتدة من تشرين الثاني ولغاية آذار، وكانت كمية الأمطار الهاطلة خلال العام (2019–2018) أعلى من المعدل العام حيث بلغت 223.1 ملم.

تشير الخواص الكيميائية لتربة المحطة الجدول (1) إلى أن درجة pH لمستخلص التربة 1: 5 تميل نحو القلوية لكافة الأعماق وهي متجانسة وتتراوح بين (8.33-7.72) وبتراوح الناقلية الكهربائية للعجينة المشبعة ما بين (1.75-8.33) وبالتالي فهي أتربة غير مالحة بينما تراوحت النسبة المئوية لكربونات الكالسيوم من(24-34)% ومحتوى التربة من المادة العضوية قليل ولا يتجاوز 1.52% في الآفاق السطحية. ومحتواها من الفوسفور قليل ويتراوح ما بين 8-9.2 ملغ/كغ ومحتواها من البوتاس يتراوح ما بين 8-34 ملغ/كغ.

		•		•		
K Mg/kg	P Mg/kg	مادة عضوية%	pН	Ec (dS/m)	الأعماق (سم)	المعاملات المانية
341	8	1.39	8.12	1.663	30-0	I_1
218	9	0.87	7.72	1.11	60-30	I_1
313	8.2	1.52	8.22	1.749	30-0	I_2
241	8	1.001	8.31	1.731	60-30	I_2
280	9.2	1.52	8.33	0.994	30-0	I 3
251	9	1.00	8.28	1.474	60-30	I ₃

الجدول (1): تحليل التربة قبل الزراعة لمحصول التربتيكال.

الزراعة والمتابعة:

صمم البحث على مبدأ القطاعات العشوائية الكاملة حيث تكونت التجربة من ثلاث معاملات مائية (جدول 2) بثلاثة مكررات للمعاملة الواحدة وقد بلغ عدد القطع التجريبية (9) قطعة مساحة كل منها (6.3) a^2 , وكان الحد الفاصل بين القطع (2) a^2 لمنع رشح المياه المالحة من معاملة الى أخرى، وبلغت مساحة التجربة (56.7) a^2 .

نوعية المياه	Ec (dS/m)	pН
I1: (مياه فرات عذبة)	1.12	7.53
I2: (مياه جوفية: البئر الموجود في المحطة)	19.61	7.47
I3: (تناوب: عذبة، جوفية)	8.4	7.52

الجدول (2): متوسط تحليل نوعية مياه الري

تم زراعة محصول التريتيكال بتاريخ 2018/12/15 لموسم واحد، تمت الزراعة على سطور بطول 3 متر للسطر والمسافة بين السطر والآخر 20 سم، كما تم مراعاة الاحتياجات السمادية للمحصول و إضافة الاسمدة الفوسفاتية والآزوتية ووفق المعادلة السمادية في وزارة الزراعة . وتمت عملية الري باستخدام الري السطحي وبلغ عدد الريات خمس سقايات بمعدل (776) $_{6}$ في الرية الواحدة . وبعد الزراعة، تم قياس ملوحة مياه الري العذبة وملوحة المياه الجوفية عند كل سقاية. كما تم رصد الأطوار الفينولوجية وأخذت عينات ترابية من جميع المعاملات المائية لجميع المكررات للأعماق ($_{60}$ -00)، ($_{60}$ -00) سم $_{60}$ وذلك في بداية ومنتصف ونهاية الموسم.

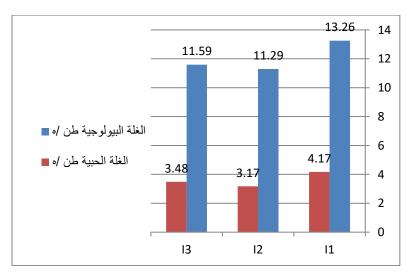
النتائج والمناقشة:

المردود:

تظهر النتائج في الجدول (3) أن هناك تأثيراً واضحاً وموثوقاً لنوعية مياه الري في انتاج التربتيكال من الغلة البيولوجية حيث ارتفع متوسط الإنتاج الكلي من (11.29طن/ه) بالنسبة لمعاملة الري بمياه مالحة I_1 إلى (13.26طن/ه) في معاملة الري بمياه عذبة I_1 وكانت (11.59طن/ه) بالنسبة وكانت (11.59طن/ه) بالنسبة

لمعاملة الري بمياه مالحة (I_2) إلى (I_3) طن (I_4) في معاملة الري بمياه عذبة (I_3) و كانت (I_4) طن (I_5) في معاملة الري بالتناوب (I_5) (جدول4، الشكل1) .

الجدول (3): تأثير الري المتناوب في مردود الغلة البيولوجية طن/ه لمحصول التربتيكال


النتيجة	L.S.D	الفرق المشاهد	المقارنة	المردود طن/هـ	المعاملة
	0.05				المائية
A	1.83	1.97	$I_1 - I_2$	13.26	I_1
С		0.30	$I_3 - I_2$	11.29	I_2
BC		1.67	$I_1 - I_3$	11.59	I_3
CV =12.17%					

الجدول(4): تأثير الري المتناوب على الغلة الحبية لمحصول التربتيكال طن/ه

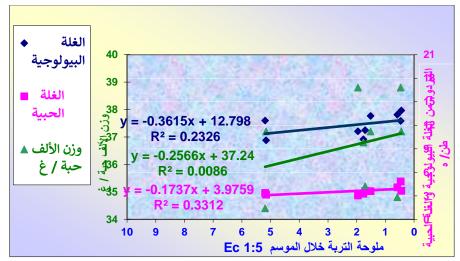
النتيجة	L.S.D	الفرق المشاهد	المقارنة	المردود طن/هـ	المعاملة المائية	
	0.05					
A	0.996	1	$I_1 - I_2$	4.17	I_1	
С		0.31	I ₂ - I ₃	3.17	I_2	
BC		0.69	$I_1 - I_3$	3.48	I_3	
	CV =6.17%					

الجدول (5): تأثير الري المتناوب في وزن الألف حبة / غ من محصول التربتيكال

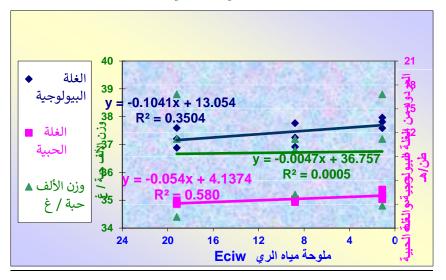
النتيجة	L.S.D	الفرق المشاهد	المقارنة	وزن الألف حبة / غ	المعاملة المائية
0.05		العرق المساهد	المفارية	ورن الاتف حبه / ح	المعامدة المحتية
AB	5.69	0.53	I_1-I_2	36.26	I_1
A		0.4	I ₂ - I ₃	36.79	I_2
AB		0.13	$I_1 - I_3$	36.39	\overline{I}_3
CV =6.22 %					

الشكل (1): تأثير الري المتناوب في مردود الغلة البيولوجية والغلة الحبية طن/ه لمحصول التريتيكال

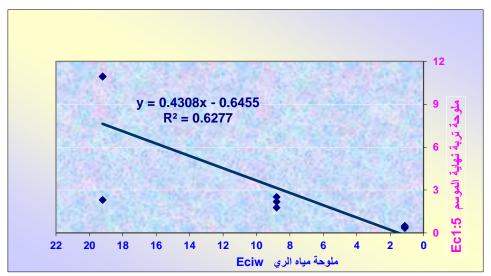
 I_1 : الري بمياه عذبة (مياه عذبة)، I_2 : الري بمياه مالحة (مياه جوفية)، I_3 : الري بالتناوب (مياه عذبة مياه جوفية).


حركة الأملاح في التربة:

يظهر من الشكل(2) تغيرات الملوحة (Ec) لكافة المعاملات المائية خلال الموسم (بداية، منتصف، نهاية) يتبين في المعاملة الأولى I_1 أن (Ec) انخفضت من (0.62 dS/m) في بداية الموسم إلى (0.47 dS/m) في منتصف الموسم و (0.41 dS/m) الأولى I_2 يظهر في نهاية الموسم، لذلك فأن هناك غسيل للأملاح في التربة وبلغت نسبة الغسيل (34%). أما في المعاملة المائية الثانية I_2 يظهر أن هنالك تراكم للأملاح فقد ارتفعت (Ec) من (Ec) من (Ec) في بداية الموسم إلى (1.86 dS/m) في منتصف الموسم و (8.05 dS/m) في نهاية الموسم، وبلغت نسبة التراكم (451%). وفي المعاملة المائية الثالثة I_3 يتبين وجود تراكم للأملاح فقد ارتفعت درجة توصيلها الكهربائي من (1.19 dS/m) في بداية الموسم إلى (1.48 dS/m) في منتصف الموسم و (1.48 dS/m) و بداية الموسم وبلغت نسبة التراكم (88%). وهذا يتفق مع ما توصل اليه العديد من الباحثين حيث يذكر (أرسلان وزملاؤه،2010) أنه عند الري بمياه عالية الملوحة (85m) حصل تراكم كميات كبيرة من الأملاح حيث ارتفعت (Ecm). كما (التوصيل الكهربائي لمستخلص العجينة المشبعة) في نهاية موسمي التربتيكال والدخن ووصلت الى (Goral et al,1999). كما (Goral et al,1999) أن التربتيكال من المحاصيل متوسطة التحمل للملوحة؛ حيث يتحمل حتى (Goral et al,1999).


الشكل(2): تأثير نوعية قيم مياه الري في Ec (1:5) التربة (بداية، منتصف، نهاية) الموسم

Square R^2 يظهر الشكل (3) وجود علاقة سلبية بين ملوحة التربة ($Ec_{1:5}$) والمردود. حيث نلاحظ أن قيمة معامل التحديد علاقة سلبية بين ملوحة الترتيب للغلة البيولوجية الغلة الحبية (dout(0.33))، (0.23)، (0.23)، على الترتيب للغلة البيولوجية الغلة الحبية (dout(0.33))، ووزن الألف حبة (غ)،



الشكل (3): العلاقة بين ملوحة التربة والمردود (الغلة البيولوجية والغلة الحبية طن/ها) ووزن ال 1000 حبة (غ) ومعامل التحديد r^2 .

كما يبين الشكل (4) العلاقة بين ملوحة مياه الري EC_{iw} والمردود، حيث يظهر وجود علاقة ارتباط سلبية بين ملوحة ماء الري (Ec_{iw}) والمردود. كما نلاحظ أيضاً أن قيمة معامل التحديد R^2 Square R^2 للغلة البيولوجية والغلة الحبية (طن/ه)، ووزن الألف (غ)، يساوي (0.55)، (0.58)، (0.58)، (0.58)، (0.58)، (0.58) على الترتيب. وهذا يعني أن 35% من التغيرات التي تحدث في قيم والغلة البيولوجية ماء الري، كما يعني أن 58% من التغيرات التي تحدث في قيم والغلة الحبية يمكن تفسيرها عن طريق التغيرات التي تحدث في ملوحة ماء الري .و يعني أيضاً أن 0.05% من التغيرات التي تحدث في قيم كمية وزن الألف حبة يمكن تفسيرها عن طريق التغيرات التي تحدث في ملوحة ماء الري .

الشكل (4): العلاقة بين مياه الري Ec_{iw} وقيم معامل التحديد Ec_{iw} ووزن ال Ec_{iw} وقيم معامل التحديد Ec_{iw} كما يبين الشكل (5) العلاقة بين ملوحة التربة ($Ec_{1:5}$) وملوحة مياه الري Ec_{iw} عنه وجود علاقة ارتباط ايجابية وأن قيمة Ec_{iw} معامل التحديد Ec_{iw} تساوي تقريباً ($Ec_{1:5}$) وهذا يعني أن حوالي Ec_{iw} من التغيرات التي تحدث في قيم ملوحة التربة (Ec_{iw}) يمكن تفسيرها عن طريق التغيرات التي تحدث في ملوحة ماء الري (Ec_{iw}).

الشكل (5): العلاقة بين ملوحة تربة نهاية الموسم ($Ec_{1:5}$) وملوحة مياه الري الشكل (5):

الاستهلاك المائي وعلاقته بالمردود:

بلغ الاستهلاك المائي الكلي (5100) م $^{8}/_{8}$ منها (3830) م $^{8}/_{8}$ سقايات و (1270) م 8 هطل مطري خلال موسم النمو، وبلغ عدد الريات خمس سقايات بمعدل (776) م $^{8}/_{8}$ في الرية الواحدة الجدول(6). وقد كانت كفاءة استخدام المياه العذبة I_{1} لمردود الغلة

 (I_3) المعاملة و الري بالتناوب (I_3) المعاملة و المعاملات و الم

كفاءة استخدام المياه كغ / م ³		المعدل الوسطي	المردود كغ / هـ	كمية المياه المقدمة للمحصول خلال	
الغلة الحبية	عدد السقايات	للسقاية العملية م ³ / هـ	الغلة الحبية	موسم النمو م ³ / هـ	المعاملة المائية
0.82			4170		I_1
0.62	5	776	3170	5100	\mathbf{I}_2
0.68			3480		\mathbf{I}_3

الجدول (6):الاستهلاك المائي الكلي وكفاءة استخدام المياه مستويات مختلفة من ملوحة مياه الري

 I_1 : الري بمياه عذبة (مياه عذبة)، I_2 : الري بمياه مالحة (مياه جوفية)، I_3 : الري بالتناوب (مياه عذبة –مياه جوفية).

الاستنتاحات:

- 1- تحمل محصول التريتيكال بشكل نسبي ارتفاع الاملاح في مياه الري حيث بلغ الفرق بالمردود 8% للمياه متوسطة الملوحة (EC=8 dS/m) و24% للمياه عالية الملوحة (EC=19.61 dS/m) مقارنة بالمياه العذبة.
- 2- تبين حدوث غسيل للأملاح في التربة وبلغت نسبة الغسيل (34%) عند الري بمياه مالحة،وأن هنالك تراكم للأملاح عند الري بمياه مالحة (EC=8 dS/m) وبلغت نسبة التراكم (450%). و عند الري بمياه متوسطة الملوحة (EC=8 dS/m). و بلغت نسبة التراكم (81 %).

المراجع:

- أرسلان، أويديس و عبدالله العيسى و منال النقشبندي (2010). تأثير الري بمياه مالحة في بعض الخصائص الجذرية وأثرها في انتاجية محصولي القمشيلم (تريتيكالي) والدخن في ظروف محافظة دير الزور. المجلة العربية للبيئات الجافة-المجلد الثالث: العدد الأول ص:37:104-48.
- الحمداني، مؤيد صديق (2002). التريتيكال (القمح الشيلمي) محصول الحبوب الجديد، نشأته، أهميته الاقتصادية ومستقبله. مجلة المهندس الزراعي. نقابة المهندسين الزراعيين. الأردن. 34–29ص. العدد 71.
- الزعبي، محمد منهل و أويديس أرسلان و رياض حاجي الشاهر (2014). المحاصيل العلفية المتحملة للملوحة . الترجمة رضوان اليوسف. دمشق-الجمهورية العربية السورية . وزارة الزارعة والإصلاح . ص47.
- Blum, A; and J.W. Johnson (1992). Transfer of water from root into dry soil and the effect on wheat water relation and growth. Plant and Soil 145:141-9.
- Dadshani, S. A.; W. A. Weidner; G. H. Buck-Sorlin; A. Börner; and F. Asch (2004). QTL Analysis for salt tolerance in barley. Rural Poverty Reduction through Research for Development. Institute of Plant Genetics and Crop Plant Research (IPK) DeutscherTropentag, Berlin, Germany. (http://www.asch-online.eu/downloads/FA-Dadshani-DTT2004- pdf).
- FAO. (1989). Water quality for agriculture, Irrigation and drainage paper 29 (Rev. 1), FAO. Rome, 174.
- Goral, H; Wegrzn, S; and L. Spiss (1999). Heterosis and Combining Ability in Spring Triticale (x Triticosecale, Wittm.). Plant Breed and Seed Sci., 43(1): 25-34.
- Hamdy, A. (1998). Slain irrigation management for sustainable use. CIHEM/MAI-Bari.

- Qadir, M.; J. D. Oster; S. Schubert; A. D. Noble, and K. L. Sahrawat (2007). Phytoremediation of sodic and saline-sodic soils. Advances in Agronomy. 96:197-247.
- Miles, D. (1987). Salinity in Arkansas vally of Colorado. Environmental protection agency. Intern agency agreement report EPA-AIG-D4-OSS4, C.O.
- Salisbury, j and J. Ross (1992). Plant Physiology 4th, Ed. PP. 588-9. Wadsworth publishing company, California.
- Soorentino, G.; P. Giorio; M. Soprano; A. Lavini; and A. Martorelia (2002) Effect of salt stress on leaf water status and photosynthetic capacity of pepper (Capsicum annum L). Scientific Meeting of Italian HorticulturaSoci. V2P.473-474.italy.
- Zeng, M;, and A. Vonshak (1998). Adaptation of Spirulina platens is to salinity stress. Comparative Bioch. and physiol. Part A Molecular and Integrative Physiol. Part A 120: 113-118.

Influence of Alternate Irrigation (Fresh-Salt Water) on Some Soil Characteristics and Yield of Triticale Crop in the Lower Euphrates Basin

Lubna AL-Bashi *(1), Tamim AL-Assi, Saleh AL-Moustafa(1), and Abdulmnem AL- hamid(1)

(1). Der- ALzoor, GCSAR, Syria.

(*Corresponding author: Lubna AL-Bashi, E-Mail lubnabashshe@gmail.com).

Received: 24/10/2022 Accepted: 20/01/2023

Abstract

This experiment was carried out in Deir Ezzor Syrian city - Seaalo Research - The General Commission for Scientific Agricultural Research(GCSAR) to determine the influence on some soil characteristics and yield of triticale crop Tertiary upon irrigation with different salinity irrigation water. Randomized-complete- block design consisting of three treatments and three replicates (fresh, salt, alternate) over cropping season(2018-2019). The results showed a significant decrease in yield with increasing the salinity of irrigation water where the biological yield (13.26,11.59, 11.29) tons/hectare respectively, and the grain yield (4.17, 3.48, 3.17) tons/hectare respectively. Irrigation with fresh water(II) (Ec=1.12 dS/m) leached a part of salt from the soil profile which (Ec) of 1:5 soil extraction reaches to Ec=0.47 dS/m, Salts accumulation in the soil was greater for the high salinity irrigating water treatment (I₂) (Ec=19.61 dS/m) which increased the (Ec) of soil extraction 1:5 to 8.05 dS/m, while a small amount of salt accumulation in the soil upon alternate irrigation (I₃) (Ec= dS/m) which increased the (Ec) of soil extraction 5:1 of the soil to 2.15 dS/m.

Keywords: alternating irrigation, salt water, triticale, biological yield, grain yield, Ec.